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Luca Clementi, Michaela Elfsbacka Schmöller, Simon Gilchrist, Saleem Bahaj, Vasco Carvalho, Dino Palazzo,
Tobias Renkin and Johannes Poeschl. as well as the participants of the Firm Heterogeneity 2021 workshop
and 2nd Research ESCB Cluster conference for their helpful comments and feedback. Karl Bertelsen Robak
provided outstanding research assistance.

†Department of Economics, University of Essex, and Paris School of Economics. Essex: Wivenhoe Park,
Colchester CO4 3SQ, United Kingdom. Email: a.clymo@essex.ac.uk

‡Research Unit, Danmarks Nationalbank, Langelinie Allé 47, 2100 København Ø, Denmark.
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1 Introduction
We document systematic and significant differences in how firms of different ages and

sizes react to the business cycle in administrative micro data. Why are certain firms more

sensitive than others? Do size and age just act as a proxy for financial frictions which am-

plify responses to shocks, as suggested by Gertler and Gilchrist (1994)? In this paper we

propose that the patterns in cyclicality can be explained by a combination of financial fric-

tions and heterogeneous returns to scale, support this hypothesis by additional empirical

evidence, and show that the interaction of returns to scale (henceforth, RTS) heterogene-

ity and financial frictions substantially affects the steady state and propagation of shocks

using a quantitative heterogeneous firm model.

We use firm-level administrative and balance sheet data on the universe of Danish firms

to measure cyclicality. We extend the methodology of Crouzet and Mehrotra (2020) by

focusing on the differences across age as well as size, and measure cyclicality by using

the co-movement of firm-level employment and sales with aggregate output. We find that

among young firms cyclicality decreases with size, while it increases with size for older

firms. We propose that two basic forces shape cyclicality across the age-size distribution.

Young firms are more cyclical due to the presence of financial frictions, which bind more

for the young. Among old firms, large firms are more cyclical if their size is driven by high

returns to scale, which makes them more responsive to shocks.

To test the influence of returns to scale and finance on cyclicality we proceed in two

steps. First, we directly estimate returns to scale (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020) and document a positive correlation

with firm size: firms with 0-5 employees have RTS of 0.75 on average, while those with

120+ employees have essentially constant RTS, and this pattern is present even if we look

only at currently young firms and measure size using future size. Second, using balance

sheet data, we show that younger firms are more leveraged. Combining both estimated

RTS and financial data in a joint regression we show that high leverage firms are more

cyclical, as are high returns to scale firms. Furthermore, the effect of leverage on cyclicality

is smaller among old firms, consistent with finance being more important for young firms.

At the same time, RTS play a more important role for old than young firms.

Despite most output being created by large and old firms that are the least likely to be

financially constrained, financial frictions can still be important, both because of general
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equilibrium effects and because they might affect which firms manage to outgrow their

constraints. Exploiting the panel dimension of our data, we show that an important frac-

tion of firms that grow to be large in old age were born small. If financial frictions slow

down the growth of these firms while they are young, or stop unlucky entrants from reach-

ing their potential, financial frictions could be very costly. We document wide heterogene-

ity in the financial situation of entrant firms in the data and show that finance is indeed

important for firm survival: exit rates are persistently higher along the firm life-cycle the

lower the initial net worth of a firm at entry. Since large firms have high returns to scale,

this mechanism naturally suggests potential interactions between financial frictions and

returns to scale over the life-cycle.

To better understand the interaction of heterogeneity in returns to scale and financial

frictions, we build a quantitative model in the style of Khan and Thomas (2013), where the

financial frictions take the form of a collateral constraint. The key ingredient of the model

is to introduce permanent heterogeneity in returns to scale, where large firms are large due

to high returns to scale and not necessarily due to high productivity, as is usually assumed.

We carefully calibrate the model to our micro-data, including on the net worth of entrant

firms and relationship between RTS and size. We validate the model by showing that it

is able to replicate our results on the cyclicality by firm size and age. Motivated by this

and our direct micro evidence, the remainder of the paper uses the model to investigate

how heterogeneity in RTS alters the costs of financial frictions in this class of models. We

highlight three key channels.

First, the composition of firms that are financially constrained changes. In the class

of models following Khan and Thomas (2013), firms are born poor, and hence financially

constrained, and grow out of these financial constraints as they age. Firms with higher

returns to scale operate with lower profit margins and therefore need longer to outgrow

their collateral constraints. In contrast, firms with low returns to scale reach their optimal

steady state size much faster.1 Outgrowing the financial constraints is thus the largest

problem for the firms that would benefit the most from their relaxation.

Second, the presence of even a small number of old, financially unconstrained firms

with high RTS can greatly dampen the aggregate output cost of financial frictions, while

1Specifically, these statements are conditional on a given starting size of firms, relative to their optimal
size, and are not due to the fact that high RTS firms are larger. Consider two firms with the same optimal
size, one with high RTS and low productivity and one with low RTS but high productivity. Conditional on
the same starting size the firm with higher RTS grows more slowly than a firm with lower RTS.
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also making the constrained firms, including entrants, worse off. Tightened borrowing

constraints, either in steady state or as a temporary financial shock, lead to slower growth

of financially constrained firms and reduced firm entry, putting downward pressure on

wages. In the model with heterogeneous RTS, the high RTS unconstrained firms respond

strongly to the fall in wages, and “crowd in”, decreasing the fall in aggregate output. This

effect is present but severely muted in standard calibrations where all firms have the same

RTS, whereas here the largest firms are not only responsible for most of the aggregate out-

put, but are also the most responsive among the unconstrained firms. A model with het-

erogeneous RTS can be dominated by the behavior of a handful of high RTS firms and, in

some respects, behave more like a model with constant RTS than a model where all firms

have a common decreasing RTS.2

Third, heterogeneous RTS amplifies “missing generation” effects following a financial

crisis. Firm entry declines more and more persistently than in the standard model, meaning

that heterogeneous RTS amplifies the firm-level responses of both young (constrained) and

old (unconstrained) firms. This is due to a general equilibrium feedback from old to young

firms: the closer to constant RTS the old large unconstrained firms are, the smaller the factor

price declines they need to induce them to absorb the resources shed by constrained firms.

While this dampens the output contraction following a financial shock, it also worsens the

situation of new entrants who suffer most from the shock and do not get the benefit of

the larger factor price fall induced in the standard model. Putting these channels together,

the larger reallocation from young to old firms in our model leads to a more persistent

aggregate productivity decline following a financial recession.

Related literature. We connect to three broad strands of literature. Firstly, to the firm

dynamics literature studying firm age and size over the business cycle. Different papers

find different, sometimes conflicting, results, which is partly driven by different samples

of firms available in a given dataset. Gertler and Gilchrist (1994) investigate the cyclical-

ity of small versus large firms and find that small firms are more sensitive to periods of

credit market tightening than large firms. Khan and Thomas (2013), building on insights

of Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999) and Jer-

2Our model also has small unconstrained firms with lower RTS than the standard calibration, who are
less responsive. The high responsiveness of large, high RTS firms dominates, and heterogeneity in RTS
amplifies the crowding in effect. Since this channel operates through general equilibrium it complements the
finding of Winberry (2021) that the responsiveness of factor prices to shocks can change the predictions of
heterogeneous firm models.
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mann and Quadrini (2012), show that small firms contracted more than large firms during

the financial crisis, and Gavazza et al. (2018) show that the vacancy yield was more cyclical

at small than large firms during this same period. On the other hand, Moscarini and Postel-

Vinay (2012) find that larger firms (in terms of number of employees) are more cyclical,

when aggregate conditions are measured using the (HP-filtered) level of the unemploy-

ment rate. Similarly, Mian and Sufi (2014) show that larger establishments contracted more

in areas with larger declines in house prices. More recently, it has been shown that firm age

is a more important predictor of both the average level and cyclicality of firm growth than

firm size (see Fort et al. (2013); Haltiwanger et al. (2013), for evidence from the US). Fort

et al. (2013) also study cyclicality by joint age-size bin. They find that young firms are more

cyclical than old firms, and that this difference is much more important than the differential

between small and large firms. They use state-level house price data to argue that financial

frictions may drive this result,3 while we directly use firm-level financial data. Sedláček

and Sterk (2017) highlight the role of high growth “gazelle” firms over the cycle, and we

argue that one cost of financial frictions is to interfere with the growth of such firms.

Secondly, we connect to the empirical literature investigating how finance affects firm

cyclicality. At the aggregate level, the recoveries from financial crises tend to be particularly

slow (Reinhart and Rogoff, 2014; Sufi and Taylor, 2022), and so understanding the firm-

level causes of this persistence is particularly important. Due to data limitations, much of

the knowledge about cyclicality and firm finance is based on large publicly traded firms.

Sharpe (1994) uses Compustat data to document that high-leverage firms are more cycli-

cal than low-leverage firms. Giroud and Mueller (2017) combine Compustat data with

establishment-level employment data to show that the decline in house prices during the

Great Recession affected higher leverage firms more strongly. Conversely, Ottonello and

Winberry (2020) use Compustat data and find that firms with low default risk, including

those with low debt burdens, are the most responsive to monetary shocks. Cloyne et al.

(2023) use Compustat data to show that younger, non-dividend paying firms exhibit the

largest changes in investment following monetary policy shocks. Publicly traded firms are

3Another strand of literature examines the cyclicality of firm financing, both in terms of empirics and also
model building. For example, see Jermann and Quadrini (2012) (investigate the cyclicality of debt and equity
issuance), Covas and Haan (2011) (the cyclicality of financing is different across firms of different sizes, with
the procyclicality of equity issuance decreasing monotonically with firm size), Crouzet (2017) (the choice of
bank and bond financing), Begenau and Salomao (2018) (firm size and debt/equity cyclicality), Jensen et al.
(2017) (size and cyclicality of financing and probability of default), Nikolov et al. (2018) (size and source of
financial constraints), Poeschl (2023) (size and cyclicality of debt maturity), Drechsel (2023) (earnings-based
borrowing constraints), or Casiraghi et al. (2021) (entrepreneur-banker relationship building).
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only a small subset4 and as such are not representative of the whole firm population, and

we complement this literature by using financial data even for young, small, unlisted firms.

More recently, new, often administrative, datasets allow going further than publicly

listed firms to achieve wider firm coverage.5 An early example is Crouzet and Mehrotra

(2020), who find that only the largest firms (99th percentile and above measured by assets)

are less cyclical than the rest, which speaks against financial frictions. We define size using

employment, and extend their empirical specification by including the interactions of size

and age. We find strong effects of size on cyclicality, which just happen to have opposite

signs for young and old firms and hence offset each other in the aggregate, highlighting

the importance of studying firm age and size together over the business cycle. Dinlersoz

et al. (2024) merge balance sheet data from Compustat and Orbis into the US Longitudinal

Business Database (LBD) to study finance for both private and public firms. They find re-

sults highly complementary to our own, including that highly levered young-small were

particularly affected during the financial crisis. We differ from their paper by addition-

ally studying heterogeneous RTS and its interactions with finance, both empirically and

theoretically.

Finally, we relate to the previously-cited literature on production function estimation,

and the consequences of heterogeneity in RTS. Gao and Kehrig (2021) estimate RTS at the

industry level and show that industries with larger average firm size have higher RTS.

Smirnyagin (2023) also estimates RTS at the industry level, and shows that the entry rate

of high RTS firms is more pro-cyclical. Relative to these papers, we estimate RTS at the

firm level and document that larger firms have higher RTS, an approach also followed by

Hubmer et al. (2024), and develop new macroeconomic insights.6

4In the US there are around 4,000 publicly traded firms (Gupta et al., 2021) in the population of over 5
million firms. Further recent contributions using Compustat include Duygan-Bump et al. (2015), Jungherr
et al. (2022), Jeenas (2019), and Grob and Züllig (2024). Another literature, exemplified by Chodorow-Reich
(2014), uses match firm-bank relationships to identify financial shocks.

5For recent papers going beyond public data see Alder et al. (2023) (France), Bahaj et al. (2022) (UK),
Cao et al. (2024) (Norway), Castillo-Martinez and Bornstein (2024) (Orbis, Europe), and Ferreira et al. (2023)
(Portugal).

6Gavazza et al. (2018) is an early contribution leveraging RTS heterogeneity to generate firm size differ-
ences in a heterogeneous firm model, which also includes financial shocks. Relative to their paper we provide
direct evidence of RTS heterogeneity and emphasize general equilibrium effects from wages, interest rates,
and capital prices, while they build a search and matching model and emphasize general equilibrium ef-
fects from labor market slack and recruitment effort. Smirnyagin (2023) and Hubmer et al. (2024) also build
models investigating the interactions between financial frictions and RTS. The former studies business cycles
and how fewer high RTS firms enter in recessions, also employing a Khan and Thomas (2013) style model.
RTS are calibrated using the firm age distribution, while we directly calibrate RTS from our estimates. The
latter studies steady states and how heterogeneous RTS amplifies the costs of financial frictions in a model
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The rest of this paper is organised as follows. In Section 2 we discuss the data and

present our empirical results about cyclicality. In Section 3 we provide a simple analytical

framework to build intuitions on the interactions between RTS and finance. In Section 4

we return to the data to provide supporting evidence on heterogeneity in RTS and the role

of financial frictions. Section 5 develops our quantitative model. Finally, in Section 6 we

conclude and discuss the implications of our results for future research.

2 Measuring cyclicality in the data

2.1 Data

Our dataset covers firms in Denmark between 2001 and 2019 at an annual frequency. It con-

tains the universe of of Danish firms across all sizes and ages. In order to analyse firm out-

comes and financial balance sheet data together, we merge two datasets (“data registers”)

provided by Statistics Denmark (DST): the FIRE dataset (“Regnskabsstatistikken”), which

broadly contains data on accounting variables, is merged with the FIRM dataset (“Firmas-

tatistik”), containing data regarding economic, employment and accounting information

at company level. The quality of this data is generally believed to be very high, as Statistics

Denmark is a government agency, and most of the variables we use are originally collected

by Denmark’s tax authority, SKAT.7 Additionally, DST also runs independent checks on

the datasets. Individual firms are identified by a unique number that is generated at the

time of registration. The merging of the datasets is done using this identifier, and thus pro-

vides exact matches. More information on data itself and the cleaning process is provided

in Appendix A.1.

Our cleaned dataset is an unbalanced panel capturing employer firms in Denmark. Our

baseline sample is firm-year observations containing both valid accounting (e.g. sales, em-

ployment) and balance sheet (e.g. debt, assets) data. Due to the availability of balance

sheet data our baseline sample starts in 2001 and so runs from 2001 to 2019 (effectively

2002 to 2019, since our main empirical specifications use growth rates and require the exis-

tence of lagged data). Moreover, while balance sheet data is available for firms of all sizes,

small firms are sampled less than large firms, making our sample stratified. Nonetheless,

of entrepreneurial choice. We study both steady states and business cycle dynamics, and i) demonstrate how
heterogeneous RTS allows the model to match our new cyclicality results along the size distribution, and
ii) emphasise the role of unconstrained high RTS firms in crowding in following a financial shock, making
factor prices less responsive, and hence amplifying missing generation effects.

7Sales, assets, liabilities, investment and information about employment based on payroll.
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we still observe firms of all sizes and ages, both publicly listed and privately owned, with

positive probability in our dataset.8 This makes our dataset uniquely suited to studying

the role of financial frictions across the whole distribution of firms, especially at younger

and smaller firms that are not featured in datasets like Compustat. We exclude banks and

other financial corporations (not to distort financial variables) as well as non-profit, chari-

ties and government controlled companies such as public hospitals. Our baseline dataset

contains roughly 2 million firm-year observations. In terms terms of employment, it covers

between 1.5M to close to 2.2M workers every year, which corresponds to 90-100% private

employment.9

Given the start and end date of the underlying registers one might reasonably worry

whether our results might be overweighting the role of finance due to the financial cri-

sis. While it would be theoretically possible to extend our sample by using alternative

datasets that cover different time periods, we believe that there was enough other varia-

tion in the Danish business cycle that other shocks are also well represented. According

to the OECD10, our sample covers the following business cycle turning points: troughs in

2003M7, 2009M7, and 2014M4, and peaks in 2006M7, 2011M4, and 2019M6. Denmark thus

experienced at least three recessions in our sample: the early 2000s recession, the global

financial crisis and the Eurocrisis. This means that while certainly important, the financial

crisis is not the only recession in our dataset driving variation in aggregate GDP.

Key variables. To measure firm how firms react to the business cycles, we focus on sales

and employment. Sales (“Omsætning”) are based either on balance sheet information or on

VAT declarations. Employment is measured in hours scalled by annual full time (roughly

1900 hours per year). Our measure of debt contains both short and long-term liabilities.

Specifically, beyond short and long-term debt (“Anden langfristet gæld” and “Andenkort-

fristet gæld”), our measure of debt also includes provisions (“Hensættelser”) — unknown

obligations such as deferred tax or pension obligations— and long (maturity beyond 1

year) and short-term debt to suppliers (“Langfristet/Kortfristet gæld til leverandører”).11

8The stratified sampling reduces the frequency of observations for small firms, but this should just reduce
the power of our empirical results, rather than altering the point estimates we find, for this group of firms.
This is supported by the fact that our main cyclicality results for employment and sales do not change when
only including firm-year observations with balance sheet data. See Figure 22 in Appendix B.2.2.

9We get higher coverage in the secnd half of the sample, see Figure 18 in Appendix A.2.
10See OECD turning points.
11The inclusion of these nontraditional liabilities in the definition of debt is the likely culprit behind the

leverage being higher than what is usually reported for firms in other countries.
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Figure 1: Share of firms across age and size bins
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(b) employment
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Note: Fraction of observations in each joint age-size bin. Lines correspond to age bins and x-axis to size bins.
Panel (a), number of firms, uses a logarithmic scale.

For assets, we consider a combination of intangible (“Immaterielle anlægsaktiver”), tangi-

ble (“Materielle anlægsaktiver”) and financial assets (“finansielle anlægsaktiver”). Finan-

cial assets are both short term (such as cash) and long term.

When estimating firms’ production functions, we use the expenditures on intermediates

from FIRE, sectoral level PPI and dissagregated input-output tables.12 We additionally use

data on a firm’s sector of operation so the results are not driven by differences between

sectors. We use DB07 classification at 36 sector grouping to control for sectoral trends and

fluctuations and the highest level of dissagration available when it comes to computing the

sectoral price indeces for purposes of RTS estimation.13

Size and age groups. We define firm size by its lagged employment (headcount). The

firm size measure thus changes as the firm grows or shrinks as it ages and is hit by shocks.

We sort firms into bins based on five headcount thresholds (0-4], (4-12], (12-40], (40-120]

and (120+) of size across the population of firms active that year. At the same time, we also

sort firms into three age groups: 0-5 (the young), 6-15 (the mature), and 15+ years (the old).

Firm age is measured in our data from the moment the firm is registered.14 This notion

of age is thus the true age since foundation of the firm, which distinguishes us from other

datasets which can only measure age since, for example, the firm was publicly listed on

stock markets.
12We extract prices and quantities of intermediates from the expenditures by combining sectoral input-

output matrices with sectoral price indices, see Appendix C.2.2.
13For details, see DST website.
14Given that it takes very little time to start a new firm in Denmark, there is not a large need to formally

register the firm long before the firm becomes economically active. Nonetheless, to align with the notion of
an economically active firm in standard models, we assign firms age 0 and include them in our dataset only
from the first year that they register positive employment or sales.

8

https://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=16251&sid=21dic


The firm shares are captured in Figure 1. Due to the well-known skew in the firm size

distribution, a large share of total employment is done by a small number of large firms.

For example, the largest firm size bin consists of roughly 1.3% of the firm population, out of

which 0.84% belong to the oldest, 0.3% to the middle-aged and 0.16% to the youngest age

group. At the same time, these firms contribute 45% of aggregate employment and 51% of

aggregate sales. Despite being smaller, young firms also contribute disproportionally to job

growth (older firms are on average shrinking), see Figure 20 in Appendix A.2. The number

of firms within each age group changes over time (see Figure 17) and cyclical fluctuations

in entry create swings in cohort size that propagate over the age distribution. More on the

moments of the data and the timeseries can be seen in Appendix A.2.

Table 1: Averages of variables of interest by age and size

Age groups Size groups
0-5 6-15 16+ [0-4] (4-12] (12-40] (40-120] 120+

N 575 685 947 1365 497 268 73 29

Employment 7.8 11.1 17.8 1.9 5.6 16.4 53.0 375.3
536 580 724 987 496 268 73 29

Sales 18765 26990 47712 5321 12442 39259 144040 1109402
470 543 723 1022 420 223 64 27

Assets 21691 34200 83217 12386 20517 32113 136890 1289130
374 404 462 634 332 199 59 26

Debt 12283 18435 43428 5957 10517 18154 72493 696463
372 401 457 630 329 197 58 25

Equity 6688 11501 29885 4596 8493 14156 57368 554581
464 511 613 886 396 233 64 25

Equity< 0 0.3 0.2 0.3 0.4 0.1 0.1 0.1 0.0
372 401 457 630 329 197 58 25

D/A 0.43 0.43 0.36 0.29 0.48 0.65 0.79 0.86
575 685 947 1365 497 268 73 29

Note: “N” shows the total number of firm observations in thousands. Sales, assets, balance sheet debt,
and net worth (assets-debt) in thousands of DKK,15 negative Net worth in percent. Not all variables are
reported every year, the grey numbers show the number of non-missing observations in thousands. Reported
numbers are the average values within a bin. Debt/assets (D/A = leverage) and net worth winsorized at
99.5th percentile. Sample includes only incumbent firms that do not exit in the current period. The fraction
of firms with negative equity reported as percentage.

2.2 Estimation framework

To study the intricate interplay between firm size and age we allow for interactions be-

tween size and age bins. Therefore, the effect of being old, for example, is allowed to
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be different for small and large firms, extending the framework of Crouzet and Mehrotra

(2020). Using the definition of groups from the previous section, we run various regres-

sions with a set of dummies controlling for the interaction of size and age:

xi,t = ∑
j

∑
k
(αj,k + β j,kyt)1i∈I j

t
1i∈A(k) + ∑

l
(γl + δlyt)1i∈S(l), (1)

where xi,t is a variable of interest, such as the level or growth rate of employment at firm

i.16. GDP growth rate yt ≡ GDPt−GDPt−1
GDPt−1

is collected from the DST National accounts. The

indices j, k, and l index firm size bins, firm age bins, and firm sectors respectively.17 1
i∈I j

t
is

an indicator variable for firm i being in size group j at time t (and similarly 1i∈A(k) for age

and 1i∈S(l) for sector).

Depending on the variable of interest, we focus on the level coefficients (α) or the cycli-

cality coefficients (β). Since we include sector controls, these capture the within-sector

average level and cyclicality of each age-size group respectively.18 We take the old-large

firm bin as the base group, so confidence intervals capture the null that a given age-size bin

coefficient is equal to that of old-large firms. We present most results graphically, plotting

coefficients across size bins and grouping the age bins into a lines of age-specific colour.

In plots we add a common shifter coefficient that captures the unconditional cyclicality of

the base group, indicated by the horizontal black line. The regression table can be found in

Appendix B.2.1. Our baseline results exclude firms that are either entering or exiting at the

given period, and we investigate entry and exit in later results.

2.3 Firm cyclicality

In Figure 2 we present our baseline cyclicality results from (1) for firm-level employment

and sales growth, focusing only on non-exiting incumbents.19 Cyclicality of both employ-

ment and sales follows a similar pattern: average cyclicality is negatively correlated across

size bins for firms in the youngest age (0-5) bin, but it increases across with size for firms in

the oldest age (16+) bin. Accordingly, young firms are typically more cyclical than old firms

16When computing firm-level growth rates of we use the normalized growth rate xi,t =
Xi,t−Xi,t−1

0.5∗(Xi,t+Xi,t)
. See

Haltiwanger et al. (2013) for a discussion.
17We use the Danish 36 sector industrial classification DB07, based on NACE rev.2
18Sector controls are important since sectors can be differentially exposed to the cycle (Abraham and Katz,

1986) which would bias coefficients if the sectors also differ in their composition across age and size. A
similar logic suggests that the level coefficients should estimated in a regression controlling for the cycle if
the age-size composition of firms changes over the cycle.

19For the results that include entry and exit, see Appenix B.2.5, for alternative size definitions see Figure 23

10

https://www.dst.dk/en/Statistik/emner/nationalregnskab-og-offentlige-finanser/aarligt-nationalregnskab


Figure 2: Cyclicality
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(a) Employment
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(b) Sales

Note: This figure present cyclicality coefficients β j,k shifted as described in Section 2.2. Coefficients be-
longing to the same age group are connected by colored lines. Vertical lines show 95% confidence intervals
corresponding to H0 of β j,k = βoldest,largest. The sample only includes incumbent non-exiting firms. The
underlying regression table is available in Table 2 in Appendix B.2.

even conditioning on size, but this gap disappears for sufficiently large firms. In the rest

of this paper we shorten this and similar statements about average cyclicality across bins

to “cyclicality decreases with size for young firms and increases with size for old firms”,

which we use without any causal interpretation. The results for the middle 6-15 workers

bin are located mostly in between the two extreme age groups, but relatively closer to the

oldest firms. The difference between cyclicality of young and old firms is statistically sig-

nificant for the first three size bins for employment and two bins for sales, and this general

pattern is robust to different specifications. The confidence intervals become very wide for

cyclicality for the largest firms, especially for the young, which is a direct consequence of

much smaller number of firms that belong to these bins.

To place our results in context with the literature, it is interesting to compare our full

joint age-size cyclicality results to simpler specifications which only investigate the role of

size or age on cyclicality independently. We run these specifications, and present the re-

sults in Figure 24, Appendix B.2.4. If we regress age and size without the interaction, we

find that younger firms are more cyclical than old firms (which is consistent with the gen-

eral view of the literature) and larger firms are more cyclical than small, but the differences

are not statistically significant within age groups. If we regress size alone, we do not ob-

serve any statistically significant pattern, consistent with the mixed results in the literature.

Including the joint age-size interactions provides a natural explanation of this result: size

alone does not predict cyclicality particularly strongly, since the relationship between size
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Figure 3: Average levels, growth rates and cyclicality of leverage
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(a) level
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(b) growth rate
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(c) cyclicality (growth rate)

Note: Leverage is defined as the ration of Debt to Assets (DA) and it is winsorised at 99.5%. “Level” panel
(a) plots αj,k coefficients respectively from regression (1) with the level of leverage as the left-had side variable.
“Growth rate” panel (b) and “cyclicality” panel (c) show αj,k and βlk coefficients from regression (1) with the
growth rate of leverage.

and cyclicality has opposite signs for young and old firms, which roughly cancel out on

average. This finding could help reconcile the conflicting results about cyclicality by firm

size discussed in the introduction.

2.4 Levels, growth rate and cyclicality of firm finance variables

In this section we turn to financial variables, analyzing the level, growth, and cyclicality of

firm-level leverage, defined as debt over assets,20 by joint age-size bin. We estimate (1) for

both the level and growth rate of leverage, and present results in Figure 3. Starting with

the average levels of leverage (panel a), we find that younger firms are on average more

leveraged than older firms across all size groups. These firms are the likely candidates for

being the most constrained, both because they already have the most (in relative terms)

debt and the shortest track-record with lenders. At the same size, across all ages, average

leverage is lower in the larger firm size bins.

Consistent with the declining level of leverage by age, the growth rate of leverage (panel

b) is negative for most firm groups, although often statistically hard to distinguish from

zero.21 The exception is young firms in the smallest two size bins whose leverage is grow-

ing. This is suggestive evidence that they have high and increasing financial needs, and

might therefore be more prone to financial frictions. Turning to the cyclicality results, lever-

age (panel c) seems to be countercyclical for almost all age-size groups with the exception

of large firms of all ages, where the point estimate appears acyclical, but with very wide

20For the results on net worth, see Appendix B.4.
21Declining leverage with age can also reflect selection if high leverage firms exit more, consistent with our

findings in Section 4.3.
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confidence bands.

3 A simple model of finance and heterogeneous RTS
In this section we set up a simple model of financial frictions where firms differ in their re-

turns to scale. The goal is to understand what mechanisms a model might need in order to

match the joint size-age distribution of cyclicality we described in the previous section, and

develop intuitions about the interactions between financial frictions and heterogeneous

RTS.

3.1 Environment

We consider a model of heterogeneous firms cast in continuous time t ∈ [0, ∞), although

much of the analysis is static Firms produce with a Leontief production function yt =

atz min{kt, lt}η in capital kt and labor lt. at is an aggregate productivity shock, z is per-

manent firm-level productivity, and η ∈ (0, 1) measures the firm’s returns to scale. Firms

purchase and sell capital at price one and it depreciates at rate δ, and labor is paid the wage

wt. Firms borrow and save at a constant risk free rate r.

For the moment, suppose that at time t there is a mass M of active firms with joint dis-

tribution Gt(n, z, η) over their net worth, n, and production parameters (z, η). We suppress

the firm subscript i ∈ [0, M]. Firms borrow in risk-free debt bt, and their balance sheet

gives net worth nt as assets less liabilities: nt = kt − bt . We define leverage as debt over

assets, λt = dt/kt, and let ϕt = kt/nt denote assets over net worth. Firms cannot raise eq-

uity, but they can borrow up to an exogenous and potentially time-varying borrowing limit

expressed as a leverage constraint λt ≤ λ̄t, so that kt ≤ ϕ̄tnt where ϕ̄t ≡ 1/(1 − λ̄t). The

Leontief structure simplifies the problem as firms simply set labor equal to capital: lt = kt,

giving sales as yt = atzkη
t .

The simplicity of the setup, in particular there is no time to build assumption, means we

can solve for the firm’s optimal capital choice without reference to a full dynamic program-

ming problem. For firms who are currently financially unconstrained, arbitrage between

production and investing in the risk free bond means their optimal capital ku
t (z, η) satisfies

the first order condition ηatzkη−1
t = δ + r + wt. For firms who are currently constrained,

their optimal capital kc
t(n) is trivially equal to ϕ̄tnt. Combining these gives the capital pol-
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icy function kt(n, z, η) as

kt(n, z, η) = min {kc(n), ku
t (z, η)} where kc

t(n) = ϕ̄tn, ku
t (z, η)=

(
ηatz

δ + r + wt

) 1
1−η

. (2)

Let n̄t(z, η) ≡ ku
t (z, η)/ϕ̄t denote the level of net worth required to afford the unconstrained

level of capital. To close the model, we assume that firms are owned by a representative

household who also consumes and supplies labor. The household has instantaneous utility

function over consumption, C, and labor supply, L, of U(C, L) = C − χL1+ηL and discount

rate ρ. This gives a constant equilibrium interest rate of r = ρ. The household’s labor

supply condition gives the equilibrium relationship between wage and labor as wt = χ(1+

ηL)LηL
t , where 1/ηL is the Frisch elasticity of labour supply. Integrating across firms yields

total output, Yt, and other aggregates. We relegate derivations to Appendix D.

3.2 Cyclicality in response to productivity and financial shocks

Our empirical results measured cyclicality by firm age and size averaging over two decades

of data, and so our empirical results most likely reflect an average across several kinds of

aggregate shocks. We consider a recession with a joint aggregate productivity, at,22 and

borrowing constraint, ϕ̄t, shock. We measure cyclicality as the contemporaneous response

of a firm’s capital to the shocks.23 Taking the total derivative of (2) in logs gives

d log kc
t(n) = d log ϕ̄t (3)

d log ku
t (z, η) =

1
1 − η

(
d log at −

wt

δ + r + wt
d log wt

)
(4)

where d log ϕ̄t and d log at are the aggregate shocks and d log wt the equilibrium response

of wages. Both shocks increase aggregate output (dYt/ϕ̄t > 0, dYt/at > 0) allowing us to

discuss cyclicality.

While simple, these equations give three useful insights. Firstly, the capital choice of

financially constrained firms, d log kc
t(n), responds only to the financial shock, d log ϕ̄t, and

in a procyclical manner. Secondly, the capital choice of unconstrained firms, d log ku
t (z, η),

does not directly respond to the financial shock. Instead, they directly respond procycli-

cally to the productivity shock, d log at, and may indirectly respond countercyclically to

22The productivity shock can be considered a stand in for other unmodelled shocks, such as demand or
factor price shocks, which move profits or costs in an equivalent way.

23This measures the cyclicality at the moment the shock hits, and ignores later dynamics, but provides
intuition. In the quantitative model we measure cyclicality using the same regressions as in the data.
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both shocks if they introduce procyclical wage adjustments, d log wt.24 Finally, the respon-

siveness of unconstrained firms depends on their RTS, η, with higher RTS firms more re-

sponsive to both productivity shocks and wages.

3.3 Mapping the model to the data

Under what conditions can this simple model be consistent with our results on cyclicality

by joint age-size bin? Consider mapping financial constraints to age and size in the model,

specifically thinking about the behavior of entrants and how they accumulate net worth.

We assume that firms receive an initial equity injection at birth giving them initial net worth

n0. This along with their permanent productivity and returns to scale (z, η) is drawn from

a CDF Ge(n0, z, η). Firms enter at exogenous rate µ0, exit at exogenous rate ζ, and retain all

profits, only paying out a final dividend when they exogenously exit. We provide a formal

discussion in Appendix D, and simply state here the intuitive results that: 1) firms become

less financially constrained as they age and accumulate net worth, and 2) under a minimal

condition on productivity, optimal firm size when unconstrained is increasing in RTS, for

a given productivity level. We consider a typical recession experiment, and identify three

conditions needed for the model to match the data.

Requirement 1: Financial constraints bind for young firms. In Figure 2 we showed

that firms become less cyclical with age, even controlling for firm size. Because net worth

is the only variable in the model which fundamentally changes with age, for the model

to generate differences in cyclicality by age group requires financial frictions to bind for

young firms. Age matters is because firms need time to grow out of financial constraints.

This happens if some firms are born with initial net worth draws n0 < n̄t(z, η). Indeed,

if all firms were born rich enough to be unconstrained, then all firms would be able to

choose the unconstrained capital level ku
t (z, η) even when young, and there would be no

differences in cyclicality by age, once size is controlled for.25

Requirement 2: Existence of both real and financial shocks. Building on the first re-

quirement, the existence of financially constrained firms is necessary but not sufficient to

generate our results by firm age. We find that both young and old firms react procycli-

24Since wt = χ(1 + ηL)LηL
t , the wage is procyclical as long as Lt is, unless ηL = 0 which induces wages to

be endogenously acyclical.
25It is important that we can control for firm size in order to make this statement, otherwise changing

composition of firms by size as we move along the age distribution could be a candidate for explaining
cyclicality differences by age.
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cally to the cycle, with young firms more cyclical than old. Since young firms are driven

by the financial shock and old firms by the real shock, this requires that both shocks hit

in our typical recession experiment.26 This also demonstrates that the firm-level responses

by firm age can be used to identify the aggregate shocks hitting the economy: the relative

response of young versus old firms identifies the relative importance of financial versus

real shocks, through the lens of the model. Since financial constraints make firms smaller,

among young firms we would also expect larger firms to be less financially constrained

and hence less cyclical, as we saw in the data.

Requirement 3: Size is positively correlated with RTS. The final requirement concerns

the behavior of old firms, and therefore again exploits that we control for joint age-size bins.

Among old firms, Figure 2 showed that larger firms were more cyclical than small. This

is especially true among firms aged 16 years and over, who are plausibly financially un-

constrained through the lens of the model. If this is the case, then all sufficiently old firms

choose the unconstrained capital level ku
t (z, η) and have cyclicality given by (4), driven by

the productivity shock. This immediately shows that if all firms have the same returns to

scale, η, then all old firms would have the same cyclicality and the model cannot match

the data. Differences in productivity, z, lead to differences in firm size, but do not affect

how reactive firms are to shocks. Cyclicality is instead proportional to 1
1−η , showing that

firms with higher returns to scale are more responsive to an aggregate productivity shock.

If large firms have higher returns to scale — which needs to be verified empirically — then

this simple mechanism provides a natural explanation for our empirical finding.

A simple partial equilibrium experiment (setting d log wt = 0) explains the intuition.

Figure 4 plots the optimal capital choice for financially unconstrained firms as the inter-

section of the marginal product of capital, ηatzkη−1
t , and input costs, δ + r + wt, both in

logs. We compare a small and a large firm, labelled 1 and 2, where in panel (a) their size

difference is driven by productivity z2 > z1, and in panel (b) by returns to scale η2 > η1. In

logs, the marginal product line has slope ηi − 1 < 0, and hence is shallower for firms with

higher RTS. An increase in aggregate productivity at shifts the log-MPK line upwards by

the same amount for all firms. This leads to equal increases in optimal capital for the two

firms in panel (a), since their log-MPK lines have the same slope. In contrast, in panel (b)

we see that this leads to a larger increase in optimal capital for firm 2, since their larger size

26Or alternatively, endogenous collateral price movements in response to other shocks which trigger finan-
cial accelerator effects, which are subsumed into the financial shock in our model.
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Figure 4: Higher returns to scale increases the cyclicality of unconstrained firms
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(b) Size driven by returns to scale

Note: Response of unconstrained firms to a rise in aggregate productivity, ∆ log a, in partial equilibrium. The
MPK line gives log η + log a + log z + (η − 1) log k.

is accompanied with a flatter log-MPK line.

Summary and implications of heterogeneous RTS for financial frictions. We stress that

while the three requirements above are needed for our simple model to match the data,

other features may also do the same. Our goal is not to rule all other explanations out —

they could sit alongside our mechanisms— but to develop requirements within the class of

models we study. We verify that these requirements are met in our data in the next section.

The presence of RTS heterogeneity has implications for financial frictions models over-and-

above just matching our new cyclicality facts, which we then develop in the simple model

(Appendix D.2) and in our quantitative model (Section 5).

4 Empirical supportive evidence
In this section we provide supportive evidence for the requirements and mechanisms pro-

posed in the previous chapter. First, we directly estimate returns to scale in the micro data

and find that larger firms have higher returns to scale (Requirement 3) and this is the case

even when we only look future size among currently the youngest or the smallest firms.

We then investigate financial frictions (Requirement 1) especially with the emphasis on the

firm life-cycle. We show that there is a large heterogeneity in net worth among entrants,

and entering net worth is strongly predictive about future survival rates. We provide fur-

ther evidence by directly studying how cyclicality varies with leverage and RTS, and docu-

ment patterns of firm growth over the lifecycle. Taking together, there are many firms that

17



are born with low levels of net worth, which makes them more vulnerable to shocks.

4.1 Empirical estimates of returns to scale

Our RTS estimates are based on production function estimation techniques. Since firm in-

puts are an endogenous choice of the firm, standard approaches in this literature (Olley and

Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015, henceforth OP, LP, ACF)

use proxy variables, such as investment or intermediate inputs, to address endogeneity

bias.27 Our baseline results are obtained using a state of the art production function estima-

tion method proposed by Gandhi et al. (2020) (henceforth GNR) that extends the existing

methodology by proposing a new way to exploit the cross-equation restrictions between

the first-order condition for the intermediate inputs and the production function.

Estimation methodology. Production functions are typically estimated at the sectoral

level, imposing an assumption that all firms in a given sector have common production

function parameters and hence (in the case of Cobb Douglas) RTS. Since our cyclicality re-

sults are within-sector, we require specifications which allow firms even within the same

sector to potentially have different RTS, which we address in two ways. Firstly, the Gandhi

et al. (2020) approach estimates a translog production function where RTS depend on the

firm’s current inputs are not therefore not constant even for fixed coefficients. Secondly,

motivated by our desire to see if RTS differ by firm size, we estimate separate production

functions for firms based on the maximum firm size they achieve during the sample.28 We

estimate 180 separate production functions: one for each of 5 maximum size partitions in

36 sectors. Beyond that, our procedure is standard and our baseline results feature a gross

output translog production function with capital, labor and intermediate inputs. The sam-

ple features over 79 thousands firms and roughly 380 thousands firm-year observations.

We estimate production functions using revenue or value added data, and so our estimates

should be interpreted as returns to scale in revenue, not physical quantity produced. For

more details on the estimation procedure, robustness using other estimation methods, and

27Production function estimation is challenging because of long-recognized endogeneity problems
(Marschak and Andrews, 1944; Griliches and Mairesse, 1995). If firms respond to shocks that are unobserved
by the econometrician, this introduces correlation between flexible inputs and the error term.

28By focusing on maximum size we aim to identify firms’ long run optimal size (e.g. after financial fric-
tions have been overcome in our model) which is a better measure of their underlying technology than their
current size. This approach obviously delivers downward biased estimates of true maximum size, especially
for young firms who exit young. For this reason we only use firms that survive for at least 4 years in the
estimation. This partition also makes sure that every firm is featured in exactly one estimation, unlike if we
were to split firms by their current size.
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Figure 5: Returns to scale by firm size
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(b) size and age effects
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Note: Panel (a) depicts the distribution of estimated returns to scale across all industries using GNR. Panel
(b) shows the estimated values of αj,k from regression equation (1) when using the estimated RTS from GNR
as the right hand side variable. Panel (c) plots average RTS by firm size for the baseline (GNR, blue with
ball markers), OP (solid black line), and LP (dashed red line) methods. All three methods suggest that larger
firms have higher returns to scale.

additional results (including results on productivity), see Appendix C.

Results. In Figure 5 we present our baseline RTS estimates in two ways. In panel (a) we

present the inter-quartile range, median and mean of the estimated RTS across all firms in

all sectors, grouping firms by their current size. In panel (b) we use equation (1) to see how

average RTS varies across size and age within sectors. We find a positive and statistically

significant relationship between firm size and RTS, and the results are very similar both in

the full cross section of firms (panel a) and also within sectors (panel b). Average RTS are

around 0.75 for the smallest firms, and above 0.95 (i.e. close to constant RTS) for the largest

firms, with the median slightly higher than the mean in the full cross section. These RTS

differences are economically significant, as demonstrated by the formula for the optimal

choice of unconstrained capital in (2) from our toy model. All else equal, in response to a

1% rise in aggregate productivity, a firm with returns to scale of η = 0.75 would expand

their capital by 1
1−0.75 × 1% = 4%, while a firm with returns to scale of η = 0.95 would

expand by 1
1−0.95 × 1% = 20%, a five times higher elasticity. In panel (c) we show that

the average differences by size are even larger using the established OP and LP methods

with a Cobb-Douglas production function, where we again estimate separate production

functions for each sector and max-size group.

Since firms may be born small and take several years to grow to their optimal size, an

important question is whether RTS is related to a firm’s current size or their underlying op-

timal size. In Figure 6 we focus only on firms who are currently small (panel a) or currently
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Figure 6: Returns to scale of small or young firms (sorted by eventual size)
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Note: This panel shows the distribution of net worth per workers across eventual maximum firm size bin.
Panel (a) restricts the sample to only firms currently in the smallest size (0-5 workers) bin, whereas panel (b)
restricts the sample only to firms currently in the youngest age (0-5 years) bin.

young (panel b). We plot the distributions of RTS for these firms against the maximum size

these firms achieve during their observed lifetime. We see that while small or young, the

firms that eventually grow large have higher returns to scale, with a quantitative pattern

similar to in the sample of all firms. We interpret this finding as RTS being a permanent

feature of firms production technology. This supports models where firms have to commit

to their production process when they enter (Sedláček and Sterk, 2017; Smirnyagin, 2023)

as we assume in this paper.

Exploring hetoregeneity in RTS is an active research area. Our results are in line with

Gao and Kehrig (2021) and Smirnyagin (2023), who find a positive relation between size

and RTS on industry level data. Using Canadian and US firm-level data, Hubmer et al.

(2024) also find a positive relationship between size and returns to scale using GNR, al-

though their definition of size is different (which might explain differences in estimated

curvature of returns to scale with respect to size). For more detailed discussion see Ap-

pendix C.5.

4.2 The effect of Finance and Returns to Scale on Firms Cyclicality

Now that we have established the link between firm size and RTS, we turn to exploring

its relation with cyclicality, estimated together with finance, measured by firm leverage.
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Consider the following regression specification:

xi,t=∑
m
(ωDA

m + ψDA
m yt)1i∈DA(m) + ∑

m
(ωrts

m + ψrts
m yt)1i∈RTS(m) + ∑

l
(γl + δlyt)1i∈S(l), (5)

where we consider both leverage and returns to scale terciles, m = 1, 2, 3. This regression

is a variation on (1), and controls for sector as before, but replaces the size and age controls

with leverage and RTS dummies (without interaction), where the coefficients capture cycli-

cality differences across the leverage (via ψDA
m coefficient) and RTS (ψrts

m ) distributions. We

run this regression on our whole sample, and additionally on two subsamples that only

cover young or old firms respectively. The results are reported in Figure 7 and the underly-

ing regression table can be found in Table 3 in Appendix B.3. The results for employment

and sales are not identical but qualitatively point in the same direction, especially when

comparing the lowest versus the highest tercile, and leverage seems more strongly related

to employment cyclicality, while RTS more so for sales.

Figure 7 shows that cyclicality is increasing in both leverage and RTS.29 Since we pre-

viously showed that leverage is decreasing in age and RTS is increasing in size, this is

supportive of our story that young firms are more cyclical due to financial constraints (Re-

quirement 1) and large firms due to high RTS (Requirement 3). Splitting the regression by

age provides further support. Firstly, the effect of leverage on cyclicality is around twice

as strong for young than old firms, consistent with the idea that finance matters less for

old firms since they have time to outgrow their financial constraints. Secondly, the effect

of RTS on cyclicality is more positive for old firms than young, consistent with our model,

where binding financial constraints render RTS less relevant for the cyclicality of young

firms.30,31

29Specifically, we compare the first and third terciles for this statement. For leverage, there is a small
decrease from the first to second terciles, but this is not statistically significant in either of the age subsamples.

30As an alternative to regression with tercile dummies, Table 4 in Appendix B.3 reports the size of cyclicality
coefficients if we treat the tercile indicators as continuous variables. Just as in Figure 7, the RTS is positive and
significant only among old firms and leverage being significant among firms of all ages, but the coefficient
being larger among the young.

31These results have comparable quantitative magnitudes to our cyclicality results in Figure 2, suggesting
that these channels are quantitatively relevant. E.g. for RTS, the cyclicality difference from low to high RTS
for old firms is around 0.5, which is reasonable fraction of the cyclicality difference by size for old firms in the
data (0.5-0.75). The cyclicality difference from low to high leverage for young firms is about 0.5-0.75, which
is a reasonable fraction of the excess cyclicality of young firms which is around 1-1.5.
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Figure 7: The effect of leverage and returns to scale on cyclicality
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(a) leverage, all firms
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(b) leverage, young firms
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(c) leverage, old firms
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(f) RTS, old firms

Note: The panels show the coefficients ψDA and ψrts from regression (5) estimated on three samples; full,
only young (0-5) and only old firms(15+). The vertical line capture 95% confidence interval. The middle
quintile of leverage or rts used as the base group.

4.3 Financial situation at entry and its implications

Distribution of net worth at entry. In this section we provide descriptive statistics on the

distribution of financial variables among entrant firms. Splitting by firm size, we document

the distributions of leverage and net worth per worker for entrant firms in Figure 8.32

Four observations stand out. First, there is wide heterogeneity in the financial position

of entrants measured via net worth or leverage, even controlling for firm size bin. The

interquartile range and the median of both net worth per worker and leverage at entry are

relatively flat across the firm size distribution, with the IQR typically spanning firms with

debt to asset ratios near 1 (i.e. near zero net worth) or as low as 0.6. Second, there is a

very heavy right tail of net worth: the average is close to the 90th percentile. This is not

the case for average leverage which is located between the 50th and 75th percentile across

the whole size distribution. Third, our data also contain a nontrivial number of firms that

have negative net worth (leverage above one) which is something that the model will not

be able to replicate. Fourth, although there is strong trend in the absolute net worth (see

32For the splices over the distribution for ages 5, 10, 15 and 20 see Appendix B.4 in Figure 27.
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Figure 8: Net worth at entry
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Note: This figure shows the distribution of net worth per workers and leverage among entrants. Legend:
solid and dashed lines: corresponding percentiles, dotted line: mean. Net worth per worker is measured in
thousands of DKK.

Table 1), this is not the case for net worth per worker.

Our conclusion is that among firms of all sizes there is significant dispersion of starting

net worth. If this is not perfectly related to the quality of the firm, this opens the door to

some firms being born financially constrained and needing time to reach their optimal size.

Net worth at entry and survival odds. Do the aforementioned differences in entry net

worth translate into differences in real outcomes for firms? We show that they do, by

documenting that the net worth the firms start with is predictive of their future survival

odds. Specifically, we run a series of linear projections with indicator variables capturing

firm survival status at age h with the quintile j of net worth per worker at entry:

Si,t+h = αh +
5

∑
j=1

β j,h1i∈N(j) + Xi,t + εi,t,h ∀h = 1, 2, ..., 15 (6)

In this regression we include only firms who entered at time t, and the indicator Si,t+h

equals 1 if the firm is still operating at age h (i.e. time t + h) and zero otherwise. Xi,t

contains sector, entering size, and time fixed effects. The coefficient of interest is β j,h which,

in the absence of other controls, would simply measure the fraction of firms in group j

who survive up to age h. With controls, β j,h measures the effect of initial net worth on the

probability of surviving up to age h relative to the excluded base group j = 3. We plot

the results from this regression in Figure 9(a). In panel (b) we break down the cumulative

survival probability into the marginal effects of surviving from age h− 1 to h, by rerunning

each regression h additionally only including observations where Si,t+h−1 = 1. The full
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Figure 9: Starting with higher net worth significnatly increases odds of surviving
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Note: This figure shows the coefficients β j,h from regression equation (6). Vertical lines (offset for better
visibility when overlaying) show 95% convidence interval.

regression table is in Appendix B.5 in Tables 5 and 6.

We find the effect of starting net worth to be important and it explains a large share

of variation in exits (R2 of over 30% by age 10 in the regression). The cumulative effect

seems to be largest around age 10 where we see a nearly 20p.p. difference between the

survival rate of firms that started with the highest versus lowest normalized net worth.33

This difference is initially small but rapidly increases up to around age 10. After age 10 the

cumulative effects stop growing reflected in the marginal effects mostly losing statistical

significance. These results suggest that finance, measured via net worth, matters especially

early on in a firm’s life. Even if a firm is promising in the sense of large productivity or

returns to scale, if it starts with low starting net worth, it faces higher chances of exit and

therefore never realizing its potential.

4.4 Persistence of firm size

We postulated that financial frictions slow down firms’ convergence to their optimal size.

In our model, firms born with low net worth will be financially constrained and hence

33The regression (6) is subject to the usual age-period-cohort identification issue so the time fixed effect in
Xi,t and the age effect in αh are not interpretable as such without additional assumptions. Importantly, this
identification problem does not affect the interpretation of β j,h, since the time fixed effect is not interacted
with initial net worth bin. If we assume additionally that there are no cohort effects, we can interpret the
coefficient αh as the average survival rate at age h. The estimated difference between in marginal survival
rate between the richest and the poorest firms at the time of entry at horizon 5 (15) is 6 pp, relative to the
marginal survival odds of 95% at age 5 (96% at age 15). At the same time, the estimated gap total odds of
surviving more than 5 (15) years is 17 pp (13 pp) relative to the surviving odds average of 75% (26%) on
average.
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Figure 10: Firm size distribution according to their current/entry size bin
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Note: Note: The first row panels show the starting size distribution depending on the current size bin,
whereas the second row shows the current size distribution based on starting size bin. In the first row, the
white gap until 100 captures the fraction of firms that exited.

small when young, and then grow towards their optimal size with age. In this section, we

provide evidence on how many firms that start small grow to become very large. To do so,

Figure 10 presents the size transition rates in two ways. In the top row, we sort the firms by

their size bin at entry and track what size bins they belong to (or whether they have exited)

at each age up to age 15. In the bottom row, we sort firms based on their current size at

each age and go backwards to see what size bin they belonged to at the point of their entry.

Unsurprisingly, firm size is very persistent: conditioning on survival, almost 80% of

firms born into the smallest size bin remain in the smallest size bin at age 15 (panel a).

Similarly, around 50% and 60% of firms born in the middle and top bins find themselves in

the same bin at age 15 (panels b and c). Outside of this persistence, firms grow and shrink,

moving into the higher and lower bins. Surprisingly, starting firm size has a relatively small

effect on long term survival: while marginally just below 50 percent of firms that started in

the smallest size bin survive to age 15, this number is marginally above 50 percent for the

firms that started in the largest size bin.34

34This is not the case if we look at the current size bin, instead of the starting size bin, see Appendix B.6. For
example, firms that start small and make it to the larger size bins are less likely to exit compared to the firms
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However, given the small number of large firms, this persistence masks an important

fact: a large share of large firms were born small. We can see this by switching perspective

and looking from current firm size backwards. A large share of the firms that currently find

themselves in the largest bins came from other bins, including the smallest. In fact, less than

40% of 15 years old firms that are currently in the largest firms size bin actually started in

the largest bin, and almost 10 percent started in the smallest bin (panel f). Similarly, nearly

60% of 15 year old firms in the middle bin started in the two smallest bins (panel e). If this

growth driven by firms overcoming financial frictions it implies costs of financial frictions,

and we use this data as an untargeted check in our model.

5 Quantitative model
In this section we build our quantitative model, which builds on classic heterogeneous-

firm financial frictions models, such as Khan and Thomas (2013).35 We extend this class

of models and discipline it using our new facts on the heterogeneity in returns to scale

across the size distribution and firm-level data on the financial position of entrant firms.

We use the model to investigate cyclicality along the age-size distribution, and the costs of

financial frictions in steady state and following financial shocks.

5.1 Model setup

The model features a continuum of heterogeneous firms, with both ex-ante and ex-post

heterogeneity. There is a representative consumer, who owns firms and supplies labor.

The key extension that we use to match our new stylized facts is different returns to scale

across firms, combined with rich heterogeneity in the financial position of firms at birth.

The model is set in continuous time t ∈ [0, ∞) with an infinite horizon. We focus on the

case without aggregate uncertainty, and conduct business-cycle experiments using unan-

ticipated one-time shocks. The model is presented in steady state, for expositional simplic-

ity, and we therefore drop the time subscript, t, in most of what follows.

Firm types. A continuum of heterogeneous firms i ∈ [0, G] are our firms of interest.

These firms produce a homogeneous final good using capital and labor. This homogeneous

good is the numeraire, with price normalized to one, which is used for consumption and

that were born large.
35For examples of other work building on this framework, see Jo and Senga (2019), Ottonello and Winberry

(2020), and the references therein.
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investment. The mass G of firms arises via endogenous entry and exit. Firms have both ex-

ante and ex-post heterogeneity, are owned by the representative household, and discount

the future at the interest rate, r.

At birth, firms draw a permanent “size type” s = {1, 2, ..., S}, which determines features

which we wish to relate to firm size. Specifically, their returns to scale, ηs, depends on

this size type, as well as a permanent component of their physical productivity, which

we label zS
s . We allow for idiosyncratic shocks to firm productivity, zJ

j with j = {1, ..., J}
denoting discrete productivity levels with transition rates from j to j′ of π J

j,j′ . All firms

share the common production function y = z min
{

k, l
α

}ηs
where z ≡ zS

s zJ
j denotes overall

productivity, which combines the permanent and idiosyncratic components. Firms have

Leontief production functions in capital and labor, with labor share determined by α.36 If

all firms had ηs = 1 then all firms would have constant returns to scale in production, and

ηs < 0 denotes decreasing returns to scale. Firms pay a stochastic fixed cost, which we

discuss further below.

Firm choices. Firms make decisions both on the extensive (entry/exit) and intensive (how

much to produce) margins. At the firm level, all factors of production can be adjusted

freely without cost. We are in continuous time, and there is no time to build for capital. It

is convenient to first optimise labor for a given level of capital. The Leontief production

function gives the solution simply as l(k) = αk, and π(k, s, j) = zS
s zJ

j k
ηs − αwk denotes

revenue less the wage bill. A firm’s capital stock evolves through a standard accumulation

equation. Given investment i per unit of time and depreciation rate δ we have: k̇ = i − δk.

One unit of investment costs pK units of final good. Old capital and investment are perfect

substitutes for firms, so capital also trades at the price pK.

Firms can borrow using a risk-free short-term bond b with interest rate r. We will con-

sider endogenous firm exit but firms will pay off their debt when exiting, so never de-

fault and so pay only the risk free rate. They face a borrowing constraint which limits the

amount they can borrow according to the amount they can post as collateral: b ≤ λpKk,

where recall that k is a firm’s physical capital. The parameter λ controls the tightness of

36The use of a Leontief production function is helpful in matching the wide size distribution in the data,
when combined with financial frictions which directly affect the purchase of capital only, and not labor. With
a Cobb Douglas production function, a financially constrained firm heavily substitutes from capital to labor
while young. By ruling this out, the Leontief production function forces firms to maintain a fixed capital-
labor ratio, so that financial frictions directly affect both capital and labor equally. This helps keep firms of
size type s in the associated group (0-5 employees and so on) that they are designed to match.
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the leverage limit, with smaller λ making the constraint tighter. In the business cycle ex-

periments, we allow λ to evolve as an aggregate financial shock. A firm’s net worth, n is

defined as its assets less its liabilities: n = pKk − b. Combining this with the leverage limit

gives k ≤ n
pK(1−λ)

. Define a firm’s assets over net worth, ϕ, as ϕ ≡ pKk/n. Combining this

with the leverage limit expresses the borrowing constraint as: ϕ ≤ ϕ̄, where ϕ̄ ≡ 1
1−λ is the

exogenous borrowing limit. Absent the arrival of a stochastic fixed cost shock, a firm’s net

worth evolves according to

ṅ =

(
π(k, s, j)

k
− (δ + r)pK

)
k + rn − d (7)

where the first term is the net return on leveraged investment, and d denotes the dividend

payout flow. We assume that firms cannot raise equity at all after the moment of birth, and

so impose d ≥ 0.

Firm HJB. The firm’s problem can be stated recursively using a Hamilton Jacobi Bellman

(HJB) equation. Optimized firm value, v(n, s, j), can be expressed as

rv(n, s, j) = max
0≤pKk≤ϕ̄n,d≥0

d + ζ (n − v(n, s, j)) + ∑
j′

π J
j,j′
(
v(n, s, j′)− v(n, s, j)

)
+ vn(n, s, j)

((
π(k, s, j)

k
− (δ + r)pK

)
k + rn − d

)
+ αω

(∫ ∞

ω=0
max {v(n − ω, s, j), n} dF(ω, s)− v(n, s, j)

)
(8)

Firms maximize the discounted sum of dividends, d. The vn term is the drift in net worth,

which depends on the capital choice and dividend payout. The ζ term captures exogenous

firm exit, where firms pay out their net worth as a final dividend, and the j′ term captures

transitions across idiosyncratic productivity states. The αω term is captures the stochastic

fixed cost shock driving endogenous firm exit, which we discuss further below.

Investment policy. The firm investment policy in this setting can be expressed as an

unconstrained optimal capital stock, which firms will achieve only if they are financially

unconstrained. The first order condition with respect to capital gives

vn(n, s, j) (πk(k, s, j)− (δ + r)pK) = µk,

where µk ≥ 0 is the multiplier on the borrowing constraint. If a firm hits its borrowing

constraint then we know that k = ϕ̄n/pK. If a firm is rich enough to be unconstrained, then

µk = 0 and the capital FOC gives us πk(k,s,j)
pK

= δ + r. This gives the unconstrained invest-
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ment policy if unconstrained, ku(s, j), which an analytical solution of the same form as the

toy model from Section 3. The overall investment policy can then be simply expressed as

k(n, s, j) = min {ϕ̄n/pK, ku(s, j)}.

Dividend policy. The first order condition with respect to dividends gives µd = vn(n, s, j)−
1, where µd ≥ 0 is the multiplier on paying positive dividends. The firm optimally pays

zero dividends whenever the marginal value of keeping net worth inside the firm is larger

than one, and only pays out dividends when vn(n, s, j) ≤ 1. Given that firms discount

the future at the interest rate, and there is always the possibility that the fixed cost shock

can drive you to be financially constrained in the future, we prove in Appendix E.1 that

vn(n, s, j) > 1 at all times in our model, so firms never pay out dividends voluntarily

(d(n, s, j) = 0) and only do so when they exit.

Firm exit and entry. All firms face an exogenous exit rate ζ. When firms exit in this way,

they pay out their remaining net worth, n, as a final dividend. Beyond the common exit

shock, there is additional endogenous firm exit driven by a stochastic fixed cost shock. At

rate αω firms have to pay a stochastic fixed cost ω ∈ [0, ∞) in order to continue producing.

If they do not pay, they must immediately and permanently exit. The fixed cost is paid as

a purchase of the final good, and is drawn from a CDF F(ω, s). Notice that the distribution

is allowed to depend on s, so that high size type firms might pay higher fixed costs, for

example. Notice that this fixed cost is not a flow (i.e. you do not pay ωdt) but rather a

stock cost, which will be paid out of net worth. So when a fixed cost shock arrives, if the

firm chooses to pay it and continue operating their net worth jumps from n to n′ = n − ω.

If they choose not to pay it they must exit and pay their net worth n out as a final dividend.

Firms optimally choose whether to exit or not by comparing the value of continuing to the

value of exiting.37 As long as v is increasing in n, there is a threshold ω̄ where the firm

would exit for any ω ≥ ω̄, defined by v(n − ω̄, s, g, j) = n. This defines threshold ω̄(n, s, j)

where for draws of ω between 0 and ω̄(n, s, j) the firm optimally remains active but with

a reduced net worth n − ω. For draws of ω greater than ω̄(n, s, j) the firm optimally exits

and pays out n as a final dividend.

For a firm with state (n, s, j) their total exit rate is EX(n, s, j) = ζ + αω (1 − F(ω̄(n, s, j), s)),

where the first term is exogenous exit and the second is endogenous exit. This formulation

37Jo and Senga (2019) use a similar structure to drive firm exit, but where the cost is paid as a utility cost
which does not directly affect the firm’s resources. In our formulation, the fixed cost is a true resource cost
which worsens the firm’s financial position if they choose to pay it and not exit.
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allows firm exit to depend on net worth, which allows the model to endogenously generate

exit rates which decline with firm age as firms accumulate net worth.

Firm entry is endogenous and allowed to vary independently for each size type. There

is a large fixed mass Me
s of potential entrants of each size type s at each instant of time. Each

potential entrant draws an entry cost ξ from a CDF Ge
s(ξ). They decide to enter after ob-

serving ξ but before knowing their draw of their initial net worth n0 or idiosyncratic shock

j. Thus, the ex-ante value of entry, excluding the entry cost, is ve(s) = E [v(n0, s, 1, j)− n0],

where j is drawn from its ergodic distribution, π J
j . Initial net worth is drawn from a distri-

bution with CDF Fe(n0, s) and PDF f e(n0, s). This distribution will be crucial in disciplining

the model, as it determines how financially constrained firms are. A potential entrant en-

ters if ve(s)− ξ ≥ 0, giving the total entry flow into each size type as µ0(s) = Me
sGe

s(ve(s)).

The flow of entrants of any type (n0, s, j) is equal to f e(n0, s)π J
j µ0(s), and the total entry

flow is µ0 = ∑s µ0(s).

Closing the model. Given the solution to the firm problem, we can simulate the endoge-

nous firm distribution in steady state, where we denote the ergodic distribution G(n, s, j),

or in transition experiments. We can then calculate aggregates such as output and employ-

ment, and moments of the firm size and age distribution. We close the model by specifying

how the prices that firms face (real wage, interest rate, and capital prices) are determined

in a general equilibrium setting.

We assume that the representative household has GHH instantaneous utility function

over consumption, c, and labor supply, L, of U(C, L) = 1
1−ηC

(
C − χL1+ηL

)1−ηC and dis-

count rate ρ. The household’s labor supply condition gives labor supply as a function only

of the wage: L = (w/(χ(1 + ηL)))
1/ηL , where 1/ηL is the Frisch elasticity of labour supply

and χ the labor disutility shifter. We suppose that investment goods are produced by a

representative investment good producing firm subject to quadratic adjustment costs. This

gives the equilibrium capital price as pK = 1+ψK
( I

K − δ
)
, where I is aggregate investment

and K aggregate capital. This formulation normalises capital prices to one in any steady

state, while they deviate from one if the aggregate investment rate changes during transi-

tions, where ψK controls the strength of adjustment costs. Since Denmark is a small econ-

omy with a trade to GDP ratio of over 100%, we use a small open economy (SOE) frame-

work as our baseline. We assume a constant exogenous world real interest rate of rw = ρ,

and since this is a one good model the equilibrium interest rate in Denmark takes the same

value r = rw = ρ. We also consider a closed economy version of the model, where the in-
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terest rate is still r = ρ in steady state but is determined by the household’s Euler equation

during transitions. Aggregate output is the sum over firms Y ≡
∫

y(n, s, j)dG(n, s, j), and

goods market clearing gives Y = C + I + FC + AC + EC + NX where FC is spending on

the stochastic fixed cost, AC spending on investment adjustment costs, EC on entry costs,

and NX are net exports. See Appendix E.1 for details and the definition of equilibrium.

Calibration. The key novelty of our calibration is that we discipline our model using

our new facts on how returns to scale vary across the firm size distribution, and on the

distribution of initial net worth across firms. Apart from these tweaks, we purposefully aim

for a standard calibration of a heterogeneous-firm financial frictions model, in the spirit of

Khan and Thomas (2013), and in the interests of space we relegate most calibration details

to Appendix E.2. We discuss here the novel features of our calibration: heterogeneous RTS

and disciplining the entrant net worth distribution.

We assume S = 5 permanent size types in the model, corresponding to the five size bins

in our empirical work. Each size type s is designed to make up the majority of firms in a

given size bin in steady state, with s = 1 corresponding to the 0-4 employee bin, s = 2 to

the 4-12 employee bin, and so on. We set the RTS parameter ηi for each size type directly

from our data, using our estimated RTS for each size group from Figure 5(a). Accordingly

we set η1 = 0.75, η2 = 0.875, η3 = 0.925, η4 = 0.95, η5 = 0.97.38 We choose the size-type

specific productivity shifters zS
s to match the employment share of each associated size bin.

We calibrate the entry process to set the relative flow of entrants into each size type in

steady state, µ0(s)/µ0, to match the share of firms in each size bin in the data.

We calibrate the initial financial position of entrants to achieve a match to two key fea-

tures of the distribution of leverage across age 0 firms from our data in Figure 8(b): Firstly,

the data shows that the leverage distribution is relatively similar across entrants in the

different size bins, motivating a simple parameterization with common parameters across

size types s. Secondly, the data shows that the distribution of leverage across entrants

within the same size bin is wide, motivating a wide initial net worth draw distribution. We

parameterize the distribution for initial net worth draws as log normal with common stan-

dard deviation σe and size-type-specific mean: n0 ∼ Lognormal(µen̄s, σ2
e ). We assume that

the mean net worth draw is a common fraction, µe ∈ (0, 1), of the net worth each size-type

38Note that some of our estimates gave slightly increasing returns to scale, which is incompatible with our
model which requires decreasing returns to scale to have well defined firm sizes. Since not all firms in each
size bin are of the associated size type, the average returns to scale in bin s differ slightly from ηs, but this
difference is small in practice, as shown in Figure 33(c).
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needs to become financially unconstrained, n̄s.39 We set the leverage constraint to allow a

maximum debt to asset ratio of 0.7. We follow Khan and Thomas (2013) and choose the

initial net worth fraction µe to match the share of aggregate employment in young firms

(the age 0-5 bin) in the data. We set σe = 1.25, which generates a wide distribution of initial

leverage. These parameters generate a distribution of leverage roughly comparable to the

data, as shown in Figure 37.40

The model is able to replicate important moments from the data, above the targeted age

and size distributions, as discussed in Appendix E.2. The model generates higher exit rates

for low net worth entrants, as in the data, and replicates well the fact that a large share of

large old firms were born in smaller size bins.

For comparison purposes, we also calibrate a more standard model where all firms are

assumed to have the same returns to scale of ηs = 0.85. This value is in line with the values

in typical heterogeneous firm models (Khan and Thomas, 2013; Winberry, 2021) and so

allows us to see how heterogeneous RTS alters the basic model.41 We refer to the two

calibrations as our “baseline” and “common RTS” calibrations respectively.

Cyclicality. In Appendix E.3 we show that the model is able to replicate our cyclicality

results from Section 2.3. We simulate a recession meant to emulate the average of the

recessions in our empirical sample. In response to a combined financial and TFP shock,

the model matches that young firms are more cyclical than old firms, and that cyclicality is

increasing in size among old firms, due to the heterogeneity in RTS. We also compare the

firm-level responses to TFP and financial shocks and discuss how firm-level data identify

the relative size of different aggregate shocks.

Overview of the experiments. In the following two sections, our two main experiments

39Specifically, for each s, n̄s is the level of n needed to afford the unconstrained capital choice at the highest
idiosyncratic productivity draw: n̄s = ku(s, J)/ϕ̄.

40We aim for a good match studying the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the data.
The 90th and 95th percentiles of DA in the data are above 1, and hence incompatible with our model. The
model does well between the 5th and 50th percentiles, but struggles to match the 75th percentile. This is
because the median firm is financially constrained in the model, so all firms from the median and above have
the same level of leverage. In practice, matching the data exactly is challenging because even very similar
firms in the data can hold quite different financial positions, for reasons outside of our model.

41We recalibrate the other parameters, and the calibration procedure for these other parameters is identical,
with two exceptions. Firstly, we fix the standard deviation of firm-level shocks at the value from our main
calibration. Recalibrating this value led to issues with the calibration, since small firms are more responsive
to the shock in the common RTS model and fall out of their targeted bin during the calibration. Secondly,
this counterfactual model is not able to match the employment share of age 0-5 firms, since firms outgrow
their financial constraints too quickly. We therefore instead choose the parameter µe to match the same
employment share of age 0 firms as in our baseline calibration.
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investigate the aggregate effects of financial frictions in our model, and how they are al-

tered by their interaction with heterogeneous RTS. We show how financial frictions inter-

act with heterogenous returns to scale. In particular, the results will vary by the degree

to which prices adjust, which will change how much resources the firms that are close to

constant returns are able to absorb.

5.2 Steady state costs of financial frictions

We begin with an illustrative steady state experiment, where we permanently tighten the

borrowing constraint by 50%. While introducing heterogeneous RTS does not change the

direction of the effect of financial frictions in the aggregate, it does alter the adjustment of

prices vs. quantities, resulting in the aggregate contribution of different firm types shrink-

ing or expanding in equilibrium. The magnitude of these differences is driven by the re-

sponsiveness of prices, which in steady state are controlled by the labor supply elasticity ηL.

In the next paragraphs we describe in detail the results for our baseline elasticity ηL = 0.3,

but we also show how the aggregate response of key variables differs for a range of elas-

ticities, plotting the results in Figure 11 for both the baseline and common RTS models.42

Allowing heterogeneous RTS leads to quantitatively important changes in how finan-

cial frictions distort the economy. On the one hand, the model with heterogeneous RTS

sees a larger fall in productivity, measured as output per worker,43 which nearly doubles

relative to the common RTS model (panel c). This reflects big changes in the allocation

of resources across firms by age and size, which we discuss further below. On the other

hand, these changes actually dampen the total fall in output and employment relative to

the common RTS model (panels a and b), reducing the overall impact of financial frictions

on aggregate welfare.44

Strikingly, allowing for heterogeneous RTS more than doubles the fall in the number of

firms following the tightened financial constraint (panel d), and this is mostly due to the

larger entry fall (panel e). Since output falls less than the number of firms, output per firm

rises, implying that some firms must have expanded to take advantage of the disruption

42Recall that the interest rate and capital price are always fixed at ρ and 1 in any steady state, so the wage
is the only price which can adjust. When varying ηL we recalibrate χ to maintain wss = 1, so that varying ηL
does not affect the steady state of the calibrated model.

43With our Leontief production function assumption the firm-level and aggregate capital-labor ratios are
fixed, so we use output per worker as our measure of aggregate productivity.

44Indeed, when ηL = 0.3, measured in consumption equivalents the welfare decline is 3.2% in the common
RTS model and only 2.5% in the baseline model.
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Figure 11: Aggregate effect of permanent financial tightening
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Note: Change in aggregates following a permanent 50% tightening of borrowing constraint. Blue line is for
our baseline model, and red the model with common RTS. x-axis traces different elasticities of labor supply,
with ηL = 0.3 the baseline value.

caused by the financial tightening. This is induced by the fall in the aggregate wage (panel

f), which raises profits and the optimal size of financially unconstrained firms. Three key

ideas, one partial equilibrium and two general equilibrium, explain the aggregate response

in our model.

Firstly, holding factor prices fixed, heterogeneous RTS make large constrained firms

more responsive to financial frictions. We see this in Figure 12, which plots the change

in the sales share of each age-size group following the financial tightening, either allowing

the wage to adjust (ηL = 0.3), or holding the wage fixed (ηL = 0). For a fixed wage, tight-

ening the constraint leads to a significant shift in sales away from large firms and towards

small firms in our model (panel a), which is absent with common RTS (panel b). This is

despite our assumption that firms of all size types started with the same net worth (on

average) relative to the amount needed to be unconstrained, µe. Starting from the same

net worth, it takes high RTS firms longer to outgrow their financial constraints since their

profit margins are lower, making them more sensitive to a financial shock. We demonstrate

this effect analytically in Appendix D.2.
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Figure 12: Effect of permanent financial tightening on sales shares
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Note: Change in fraction of firms in each joint age-size bin following a permanent 50% tightening of bor-
rowing constraint. Each line is a different age group. Panels (a) and (b) hold the wage constant (by setting
ηL = 0) and panels (c) and (d) allow the wage to adjust (ηL = 0.3).

Secondly, this effect is overturned in general equilibrium in our model, mainly due

to the behavior of large unconstrained firms. As employment falls the wage falls, which

raises profit margins for constrained firms and optimal firm size for unconstrained firms.

This effect is most pronounced for large firms with high RTS, who are the most respon-

sive to changes in factor prices. This causes a significant increase in size at large, old (and

hence unconstrained) firms, leading to a nearly 20pp increase in their sales share (panel

c). In other words, with heterogeneous RTS, large unconstrained firms “crowd in” after a

financial tightening. We demonstrate this effect analytically in Appendix D.2 for our ana-

lytical model where r is fixed: in the limit where there exists even a single unconstrained

firm with constant RTS, aggregate employment is completely unresponsive to the financial

shock. This effect is effectively absent in the model with common decreasing RTS (panel d),

because large firms in that model have lower RTS and hence are unresponsive to changes

in factor prices.

Finally, because large unconstrained firms crowd in so much after a financial tightening
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with heterogeneous RTS, this amplifies missing generation effects. Specifically, since high

RTS firms are so responsive to wage changes, a smaller fall in wages is needed to equilibrate

the labor market than in the common RTS model. For ηL = 0.3, the required wage fall is

only half as large (Figure 11 panel f) and since wages are endogenously less responsive

to shocks this creates problems for entrant firms. Entrants have a high need for finance,

and with a smaller decline in wages, the value of being an entrant firm falls more after the

financial shock, which is why entry falls so much more in our model than in the common

RTS model. To see that it is wages driving the larger entry fall in our model, Figure 11(f)

shows that that for fixed wages (ηL = 0) the decline in entry is instead smaller in our model

than the common RTS model. With fixed wages the general equilibrium forces are absent,

which also flips the relative magnitude of the output and productivity (panels a and c)

effects between the heterogeneous and common RTS models.

In summary, allowing for heterogeneous RTS dampens the steady state costs of finan-

cial frictions for aggregate output, but increases the amount of misallocation and amplifies

missing generation effects. Put together, the underlying mechanisms show the importance

of properly understanding i) the general equilibrium role of factor prices, and ii) how re-

sponsive firms are to those factor prices, when modelling financial shocks in heterogeneous

firm models. Winberry (2021) emphasised the role of factor prices, and a contribution of

our paper is to emphasise that understanding firm-level responsiveness may be equally

important.

5.3 Propagation of financial crises

The second experiment uses the model to assess the costs of a temporary financial shock.

To learn more about the interaction of finance and RTS with firm size and age, we present

the how variables of interest respond, first in aggregate but then split across different cri-

teria (young vs old, small vs large, constrained vs unconstrained). To provide the most

detailed insight into the micro-level responses, we conduct a cohort by cohort exercise

(Figure 15). All these exercises document the large heterogeneity in responses and show

how financial crises lead to low entry resulting in slow recoveries. Like in the steady state

experiment, introducing heterogeneous RTS does not change direction of the responses to

shocks, but amplifies the micro differences: in response to a temporary financial shock cur-

rently constrained firms shrink and unconstrained firms expand, and this gap gets larger

in the presence of heterogeneous RTS.
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We consider an unanticipated shock, and at time 0 agents learn that the borrowing

constraint will follow a path {ϕ̄t} which eventually converges back to the calibrated steady

state value. We tighten the borrowing constraint by 50% for five years, and then allow it

to converge smoothly back to the steady state. All prices adjust in general equilibrium

during the transition, with the shock and key aggregates plotted in Figure 13, and prices

and further aggregates in Figure 40. This setup following the spirit of the exercise in Khan

and Thomas (2013), which was designed to mimic the Great Recession.

Figure 13 shows that the financial shock causes a large recession with a peak output

fall of 2.5%, due to a fall in both input use and a nearly 1% fall in productivity. The fall in

output is very persistent, recovering only half of its value in the decade after the shock has

receded. At the same time, firm entry falls by nearly 40%, leading to a large and persistent

decline in the number of firms. The overall firm exit rate actually falls in impact, but we

show later that this reflects composition effects and the firm exit rate actually rises for most

cohorts.

Figure 13: Aggregate effect of a temporary financial shock
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Note: Response of aggregates to a temporary 50% tightening of the borrowing constraint, whose path is
given in panel (a). Panels (b) and (c) break down output and the number of firms respectively.

The decline in input use is driven by the financial shock directly reducing the ability of

young, constrained firms to purchase capital. To demonstrate this, in Figure 14(a) we study

the response of firms who were alive at the time the shock hit, and compare the evolution

of their aggregate output per firm relative to a world where the shock did not hit. We cat-

egorise firms into those financially constrained or unconstrained the moment before the

aggregate shock hit, and find a nearly 50% fall in output per firm for initially constrained

firms, offset by a nearly 20% rise in output per firm from initially unconstrained firms.45

45An alternative is to simply look at the total output per firm of constrained and unconstrained firms at
each period of the simulation. However, the number of firms who are financially constrained mechanically
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Financially unconstrained firms respond to the shock by expanding, since wages and inter-

est rates fall. This offsets the fall in aggregate output, but the large change in the allocation

of inputs across firms is what causes measured productivity to fall. Since constrained firms

also tend to be younger, these mechanics are also reflected in the firm age distribution

(panel b), where young firms shrink and older firms expand. Exactly as in response to the

permanent financial shock, it is the large old, unconstrained firms who are able to expand

the most in response to the declining factor prices, due to their high RTS. This is reflected

in the changes in the firm size distribution, and in panel (c) we see that output per firm

rises for the high size type (s = 5) firms while it falls for the low size type (s = 1) firms.

Figure 14: Effect of a temporary financial shock by age, size type, and finance
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Note: Response of average output per firm (Y/G) of various firm groups to a temporary 50% tightening of
the borrowing constraint. Panels (b) and (c) plot averages by current firm age and firm size type respectively.
Panel (a) plots only firms alive at the moment the shock hit, split by whether they were financially constrained
or not.

Why does the economy respond so persistently to a temporary financial shock? This is

driven entirely by cohort effects: there are fewer firms born in the years immediately after

the shock, and the firms that are born never manage to outgrow the disadvantage of being

born during a financial crisis. We document this in detail in Figure 15. In panels (a) and

(b) we study the total output produced by different cohorts of firms at each point in time,

where the x-axis is calendar time following the shock. The black dashed line plots total

output for comparison, and each solid line tracks one cohort of firms from the year they

are born until they reach 20 years old. We plot the deviation of the cohort’s total output

from its usual lifecycle, so a negative value means that this cohort is producing less output

than they usually would at that age, in the absence of the shock. In panel (a) we plot cohorts

of firms who were alive when the shock hit, and in panel (b) we plot the cohorts born in

shoots up when the constraint is tightened, and the resulting composition effect masks the underlying dy-
namics. Our approach avoids this problem.
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or after the year the shock first hit. We visualise cohorts across the two panels with older

cohorts in blue merging to yellow and then red for the younger cohorts. In panel (b) firms

have age 0 in the first time they appear in the plot, and then age along with calendar time

as we move to the right. In panel (a) all firms are alive at the time of the shock.

Cohorts which were old when the shock hit (panel a, blue lines) contract their total

output the least, or even expand, following the shock, because these tend to be financially

unconstrained firms. These are the firms who crowd in and dampen the aggregate output

response to the shock. In contrast, firms who were young when the shock hit (panel a,

yellow lines) or born shortly after (panel b, yellow lines) contract total output the most fol-

lowing the shock, because they are young and financially constrained. Importantly, these

effects are persistent: the total output in young cohorts remains below their usual lifecycle

amount for the entire 14 year period plotted, despite the shock having faded. Thus, the

financial shock has a permanent scarring effect on these generations, which is why the re-

covery from the crisis is so slow. Eventually cohorts born seven years after the shock hit

(panel b, red lines) have higher total output than their usual lifecycle, as they benefit from

the shock fading and lower factor prices, and help drive the recovery.

In panels (c) to (f) we decompose the total output changes into output per firm and

the total number of firms. Panels (g) and (h) plot the exit rates of each cohort, again all

relative to their usual lifecycle. For firms alive at the time the shock hits, the changes in

the number of firms are minimal (panel e) because while exit rates do change they do so

relatively little (panel g). It is instead changes in output per firm (panel c) which drive the

response of total output for these firms. For firms born when or after the shock hits, we see

important movements in both output per firm (panel d) and the number of firms (panel

f). The cohorts born in the seven years after the shock hits see both smaller output per

firm and a smaller number of firms. The smaller number of firms is driven mainly by the

large decline in firm entry, but the rise in firm exit for these cohorts (panel h) also plays a

role. These deficits persist over the whole lifecycle of the cohorts, even after the shock has

receded. Thus, we see that the persistent fall in output in the model is driven by both a

missing generation of young firms, and the persistent scarring of the young firms that did

enter in the years just before and following the shock.

How does heterogeneity in RTS affect the transmission of the financial shock? To an-

swer this question we compute the response of the economy with common RTS to the same

shock, and compare it to our baseline economy in Figure 16. The results and intuitions mir-
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Figure 15: Cohort analysis: effect of a temporary financial shock
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(c) Output per firm
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Note: Response of to a temporary 50% tightening of the borrowing constraint by firm cohort. Each line tracks a different cohort, with
the value at time t giving the value of that variable (as deviation from their usual lifecycle) for that cohort at calendar time t. Left panels
plot firms alive before the shock hit and right panels firms born afterwards.
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Figure 16: Temporary financial shock: comparison to homogenous RTS model
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Note: Response of economy to a temporary 50% tightening of the borrowing constraint in the baseline (blue
line) common RTS (red line) models. Panel (d) plots only firms alive at the moment the shock hit, split by
whether they were financially constrained or not.

ror exactly those from the permanent financial tightening experiment, and so we restate

them only briefly here. Heterogeneity in RTS actually dampens the response of aggregate

output to a financial shock (panel a), while amplifying the fall in entry and the number of

firms (panel e). This leads to a more persistent fall in productivity (panel b). The damp-

ened output response is because unconstrained old large firms are able to crowd in more

when they have high RTS, and so offset more of the financial shock. This is shown in panel

(d), where the offsetting response of initially unconstrained firms to the shock is more than

twice as large in our model than the common RTS model. At the same time, heterogeneity

in RTS amplifies the direct effect of the financial shock, as we see that the contraction in

output per worker of initially constrained firms is much larger and more persistent in our

model, as is the decline in entry and the number of firms. The key mechanism here is again

that young cohorts suffer from the increased ability to crowd in that having large, high RTS

firms in the model brings. Since the factor prices need to fall less to restore equilibrium (see

e.g. the wage in panel f) young cohorts do not benefit from low factor prices following the

shock. While heterogeneity in RTS is therefore good for overall GDP following a financial

shock, it indirectly amplifies missing generation and scarring effects on young firms.
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6 Conclusion
In this paper, we present a new fact about firm cyclicality using high quality registry data

from the universe of Danish firms: among young firms, cyclicality decreases with firm size,

while the opposite is true for old firms. We propose and test that two channels can explain

this heterogeneity. Firstly, young firms are more likely to be financially constrained, mak-

ing them more cyclical than old firms who have had more time to accumulate financial

resources. Secondly, among older firms, larger firms are more cyclical because their higher

returns to scale make them more sensitive to shocks even in the absence of financial fric-

tions. These conjectures are confirmed using balance sheet data and production function

estimation, where we provide direct evidence that leverage is decreasing in firm age, and

RTS are increasing in firm size. Leverage is a stronger predictor of cyclicality for young

firms than old, while the opposite is true for RTS. At the same time, financial frictions can

leave scars even among older firms, as we show that many old large firms are born small,

and the financial situation of entrants affects their odds of surviving into old age.

We build a quantitative heterogeneous firm model and show that the introduction of

heterogeneity in RTS greatly changes the implications of financial frictions in this class of

models. Typical heterogeneous firm models assume decreasing RTS, and given that we

estimate large firms to be very close to constant RTS, it is perhaps not surprising that in-

troducing even a small number of such firms changes how an otherwise standard model

behaves. Many of our results stem from the fact that high RTS make firms much more

sensitive to shocks or changes in factor prices. To the extent that this could even exagger-

ate the sensitivity of firms to temporary shocks, this elevates further the case for studying

and modelling firm-level adjustment costs (Cooper and Haltiwanger, 2006), something we

abstract from in the current study. On the other hand, our framework could have implica-

tions for other topics such as the transmission of monetary policy (Ottonello and Winberry,

2020) or recent declines in business dynamism (Pugsley and S. ahin, 2019; Decker et al.,

2020), where changes in the distribution of RTS could affect the responsiveness of firms to

their environment.
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ONLINE APPENDIX
A Data construction appendix
A.1 Additional information on dataset building process
We use the following datasets provided by Statistics Denmark (DST). All data is at the
yearly frequency.

• FIGT (“Gammel Firmastatistik”) + FIGF (“Gammel firmastatistik regnskabsdata”,
1992-1999), FIRM (“Firmastatistik”, 1999-2019): General firm-level data for sales and
employment.

• FIRE (“Regnskabsstatistikken”, 2001-2019): Firm-level accounting data such as assets
or debt of non-financial corporations. Information in FIRE comes from either a survey
done by DST with a rotating sample of approximately 9000 firms, or directly from tax
authority SKAT. The sampling of firms in the survey depends on their size: firms with
more than 50 workers are always included, 20-49 are included for 5 years every 10
years, firms with 10-19 workers are included every 2 years every 10 years

Overall, we have universal coverage of Danish firms regarding employment and sales
as well as financial variables for the period starting from 2001 until 2019. Due to the strat-
ified sampling of balance sheet data from FIRE, for smaller firms we do not have informa-
tion for every firm in every year, but we do have data that has positive coverage even up
to the smallest firms.

Subject to some minimal threshold on economic activity,46 all firms are legally obliged
to report data to SKAT or DST, which are then collected in these databases. We drop all ob-
servations that we deem as inactive by our definition, i.e. firms that provide no information
about employment, sales, value added, or profits.

We also drop all firms that never in their life employ more than one worker.47 Finally,
we also drop firms listed as non-profits as well as entities controlled by government at any
level. In our baseline exercises, we include only firms that do not exit in the current or the
next year. We thus do not separately investigate the role of firm entry or exit in driving
cyclicality.

Sometimes, information about a particular variable for a given firm is missing in the
aforementioned registers. This is more likely for for financial rather than real variables, for
smaller firms and for firms in the process of exiting. The year of exit also causes problems
for variables that measure stock at a given point in time, rather than annual average. For
these reasons, we only consider observations for firms that are not exiting in a given year
when estimating the cyclicality of variables that is based on growth rates. For indicator of
entry and exit, we do include the year of entry and exit in the regression samples.

Firm-level growth outcomes are defined by the normalized growth rates suggested by
Haltiwanger et al. (2013): for any firm-level variable xi,t, we measure growth from t − 1 to

46In most situations, firms that report employment that corresponds to less than 0.5 full-time workers are
considered inactive by DST, but still present in our data.

47We do this to eliminate sole proprietorship firms and also firms that exist due to tax optimization pur-
poses.

1



t as

ĝxi,t ≡
xi,t − xi,t−1

1
2(xi,t + xi,t−1)

,

where i indexes firms and t years. As discussed by Haltiwanger et al. (2013), this growth
rate, which uses the average of the current and past value as the denominator, rather than
just the past value, is more robust and typically has better properties in firm-level data.
With this definition, the growth rate of any variable at the year of entry is 2 and it is equal
to -2 at the year when firms exit.

A.2 Basic data

Figure 17: Number of firms in size and age bins over time
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(b) Number of firms in each age group

Note: This figure includes entering and exiting firms.

Figure 18: Employment coverage
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Note: This figure shows the comparison in coverage of people employed in our data (blue line) and the offi-
cial Statistics Denmark reported number of people working in private companies (aggregated from monthly
to anual frequency by averaging). Y-axis in thousands of workers.
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Figure 19: Share of firms across age and size bins
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(e) employment share, includ-
ing entry/exit
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(f) sales share, including en-
try/exit

Note: Fraction of observations in each joint age-size bin (panels (a,d) or contribution to the aggregate em-
ployment (b,e) or sales (c,f)). First row shows the baseline results that exlude entry and exit, second row
shows the contribution including entry and exit (by construction, firms in their exiting year have zero inputs
and production). Panels (a) and (d) have log scale. Lines correspond to age bins and x-axis to size bins.
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Figure 20: Contribution to job creation/destruction
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(d) start size, including entry/exit

Note: Job creation defined as net change in employment for incumbent firms or as the current employment
for the entrants. The left column reports the results excluding entrants and exiters (the baseline sample), the
right column includes exiters and entrants. The first row uses the current firm size bin as the sorting variable
on the x-axis, the second row uses the size at the time of entry as the sorting variable.
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Note about large entrants. Who are the young firms that enter with size that places them
already into the largest size bin? We provide information about the firm demographics
in Section 4.4. In our sample an entry of a firm is recorded when a new firm registration
number is established so we are not able to exclude the possibility that an exiting firms
for whatever reason changes its registration number is treated as a new firm. However,
we can show despite this, young large firms still behave on average differently than older
large firms. For example, they grow much faster both in terms of employment and sales,
as Figure 21 shows. In fact, across all size bins larger than five workers, the young firms
are much more similar to each other in terms of their growth rates than to older firms. This
suggests to us that mischaracterising some existing firms or mergers as entrants is not the
driving the average behavior of large entrants.

Figure 21: Growth rates
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(b) Sales

Note: This figure present level coefficients αj,k from regression equation (1) with growth rate of emplyoment
(panel (a)) or sales (panel (b)) as the left hand side variable, shifted as described in Section 2.2. Coefficients
belonging to the same age group are connected by colored lines. Vertical lines show 95% confidence intervals
corresponding to H0 of β j,k = βoldest,largest. The sample only includes incumbent non-exiting firms. The
difference between this Figure and Figure 2 is in exclusion of all firms that do not report financial variables
in a given year.

B Empirical results appendix
B.1 Regression details
Specifically when using growth rate of for example employment, for each size bin, αjk
captures the marginal effect on the average growth rate of firms of being in that size bin.
For cyclicality, we are interested in the β jk parameters, which capture how the firm-level
growth rates, ĝxi,t , are differently related to the aggregate growth rate, yt. The interpretation
of β jk is that a 1pp increase in aggregate growth is on average associated with a “β jk”pp
increase in firm-level growth for firms in size group j and age group k, on top of any addi-
tional effects captured by sector-specific cyclicality. Thus, the β jk captures the cyclicalities
of each firm age-size group. Similarly, δl coefficients control the cyclicalities of the different
sectors, to strip out the potentially differing average cyclicality of different industries.
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The practical implementation of (1) is done via REGHDFE48 package in STATA. The
coefficients α and β are computed relative to the base group, which is the oldest-largest
firms. To reconstruct the cyclicality of this group, we run the regression

ĝxi,t = ∑
l
(γl + δlyt)1i∈S(l), (9)

only for firms in the base group and use the average cyclicality across all sectors as a level
shifter for all coefficients obtained from regression equation (1).

It is also important to remember that the regression coefficients with sectoral level and
cyclicality controls do not necessarily look identical to the average values of any variable
over the size x age bin distribution. This is because firms in any given sector are not nec-
essarily unifirmly distributed across all size x age bins. For this reason, we prefer the re-
gression setting to report the average effect of age and size. However, sometimes it is also
useful to look at the distribution of specific firm characteristic, such as estimated returns to
scale in Figure 5 in the cross section, without controlling for sectoral differences.

B.2 Additional cyclicality results
B.2.1 Regression table for the baseline results

48For details, see Correia (2016).
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Table 2: Cyclicality regression coefficients

(1) (2) (3) (4)
employment employment sales sales

[0-4] × y -0.66∗∗∗ -0.61∗∗∗

(-5.69) (-4.71)

(4-12] × y -0.15 -0.28∗

(-1.29) (-2.15)

(12-40] × y -0.06 -0.20
(-0.49) (-1.53)

(40-120] × y 0.07 -0.02
(0.54) (-0.13)

0-5 × y -0.50 -0.46
(-1.36) (-1.17)

6-15 × y 0.48∗ 0.27
(2.00) (1.10)

[0-4] × 0-5 2.46∗∗∗ 1.79∗∗∗

× y (6.61) (4.49)

[0-4] × 6-15 0.08 0.07
× y (0.31) (0.28)

(4-12] × 0-5 1.30∗∗∗ 1.06∗∗

× y (3.50) (2.65)

(4-12] × 6-15 -0.26 -0.08
× y (-1.05) (-0.33)

(12-40] × 0-5 1.01∗∗ 0.96∗

× y (2.67) (2.36)

(12-40] × -0.22 -0.07
6-15 × y (-0.87) (-0.29)

(40-120] × 0.91∗ 0.70
0-5 × y (2.14) (1.54)

(40-120] × -0.40 -0.19
6-15 × y (-1.44) (-0.68)

y 1.38∗∗∗ 1.89∗∗∗

(13.11) (15.60)
Observations 1807893 18525 1569709 17064
Adjusted R2 0.023 0.034 0.022 0.026
reg type Size x Age shifter Size x Age shifter
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This Table present cyclicality coefficients β j,k from regression equation (1) as well as the shifter that
corresponds to the average cyclicality of base group, which are the largest oldest firms (average across all
sectors).
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B.2.2 Results for the sample limited to firms reporting financial variables

Figure 22: Cyclicality, subsample with firms reporting financial variables
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(b) Sales

Note: This figure present cyclicality coefficients β j,k shifted as described in Section 2.2. Coefficients be-
longing to the same age group are connected by colored lines. Vertical lines show 95% confidence intervals
corresponding to H0 of β j,k = βoldest,largest. The sample only includes incumbent non-exiting firms. The dif-
ference between this Figure and Figure 2 is in exclusion of all firms that do not report financial variables in a
given year.

B.2.3 Cyclicality with assets based size definition

Figure 23: Cyclicality when size is defined by assets
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Note: This figure present cyclicality coefficients β j,k shifted as described in Section 2.2. Coefficients be-
longing to the same age group are connected by colored lines. Vertical lines show 95% confidence intervals
corresponding to H0 of β j,k = βoldest,largest. The sample only includes incumbent non-exiting firms.
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B.2.4 Alternative specification of age and size interaction

Figure 24: Alternative age specifications and the cyclicality of employment and sales
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(a) employment, baseline
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(b) employment, additive age
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(c) employment, no age
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(d) sales, baseline
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(e) sales, additive age
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(f) sales, no age

Note: This figure present cyclicality coefficients β j,k (shifted as described in Section 2.2) for different specifica-
tions of age and size interaction in equation (1). The left column shows the baseline (and and size interacted,
middle column shows the results where age and size enter additively and the right column shows the results
without any age control. In the additive specification (middle column), the age effect has to be the same for
any size group. The estimated age effects are driven much more by the small firms, because there are more
numerous than old firms. Coefficients belonging to the same age group are connected by colored lines. Verti-
cal lines show 95% confidence intervals corresponding to H0 of β j,k = βoldest,largest. The sample only includes
incumbent non-exiting firms.

9



B.2.5 Cyclicality with entry and exit

For the baseline results, we exclude both entry and exit. In that sense, the reported cyclical-
ity of employment and sales only capture the intensive margin of cyclical adjustment and
we report the cyclicality of exit separately. However, the cyclicality to be computed even
in the year of entry (where ĝit = 2) or exit (ĝit = −2). These results are following the logic
of Siemer (2019). Results with inclusing entry and exit are reported in Figure 25.

Figure 25: Cyclicality result: baseline vs sample with entry/exit
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(a) Employment - baseline: no en-
try/exit
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(b) Employment - with entry/exit
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(c) Sales - baseline: no entry/exit
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(d) Sales - with entry/exit

Note: This figure present cyclicality coefficients β j,k (shifted as described in Section 2.2) for baseline (left
column) and including entrants and exiting firms in the sample (right column).

The largest change from the baseline results is the increased cyclicality of young firms
in the third and fourth size bin (12-40 and 40-120). This suggest that these firms have more
pro-cyclical entry and countercyclical exit than other firm types.
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B.3 RTS and Leverage regression details

Table 3: RTS vs Leverage regression

(1) (2) (3) (4) (5) (6)
employment employment employment sales sales sales

1st terc rts × y 0.00195 0.0232 -0.0639 -0.234∗∗ -0.461∗∗ -0.198
(0.02) (0.14) (-0.48) (-3.11) (-3.21) (-1.66)

3rd terc rts × y 0.0959 -0.0856 0.256∗∗ 0.0465 -0.309∗ 0.302∗∗

(1.61) (-0.59) (3.27) (0.70) (-1.97) (3.28)

1st terc DA × y -0.0336 -0.0416 -0.0390 0.127∗ 0.158 0.0674
(-0.54) (-0.27) (-0.48) (2.08) (1.10) (0.80)

3rd terc DA × y 0.535∗∗∗ 0.604∗∗∗ 0.310∗∗ 0.620∗∗∗ 0.825∗∗∗ 0.340∗∗

(6.85) (3.91) (2.72) (8.68) (6.02) (3.01)
Observations 379100 104001 145647 357495 98480 137356
adj-r2 0.0171 0.0175 0.0215 0.0282 0.0298 0.0345
Firm age all young old all young old
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This regression table presents the results of regression (5). The base groups in the regresion is always
the middle tercile of RTS or leverge.

Table 4: Slope effect of leverage and returns to scale on cyclicality

(1) (2) (3) (4) (5) (6)
employment employment employment sales sales sales

y × rts var -0.0250 -0.0798 0.0538 0.0342 0.0400 0.0858∗

(-0.98) (-1.49) (1.45) (1.53) (0.86) (2.54)

y × DA var 0.150∗∗∗ 0.189∗∗∗ 0.0733∗ 0.101∗∗∗ 0.170∗∗∗ 0.0460
(6.07) (3.49) (2.10) (4.70) (3.73) (1.44)

Observations 376570 105084 142683 355216 99546 134602
adj-r2 0.0154 0.0158 0.0187 0.0265 0.0285 0.0316
Firm age all young old all young old
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This regression table presents the results of regression (5) but then the indicator variables of RTS and
leverage quintiles are treated as continuous variables. As the bin numbers are treated as continuous variables,
we only interpret these results as indicating whether cyclicality increases or decreases with returns to scale
of the amount of leverage.
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B.4 Net worth

Level and cyclicality.

Figure 26: Average levels, growth rates and cyclicality of net worth per worker
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(b) growth rate
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(c) cyclicality of growth rate

Note: This figure present cyclicality coefficients αj,k and β j,k from regression (1) with net worth per worker
(level or growth rate), shifted as described in Section 2.2. Coefficients belonging to the same age group
are connected by colored lines. Vertical lines show 95% confidence intervals corresponding to H0 of β j,k =
βoldest,largest. The sample only includes incumbent non-exiting firms.

Distribution at different ages. Here we report the distribution of net worth per worker
similar to the Figure 8, but with additional ages: 5, 10 15 and 20. Net worth per worker is
very dispersed: the average is often close to the 90th percentile.

Figure 27: Net worth per worker at age 0,5,10,15 and 20.
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(a) nw/w, age 5
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(b) nw/w, age 10
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(c) nw/w, age 15
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(d) nw/w, age 20
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(e) leverage, age 5
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(f) leverage, 10
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(g) leverage, 15
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(h) leverage, 20

Note: Net worth is in thousand of krone per worker. More detailed legend description: thick dotted line:
median, medium thinkness line: 25/75 percentiles, think balled line: 10/90th percentiles,: dotted green line:
mean. Missing values for 10th percentile of net worth per worker indicate a negative value.
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B.5 Net worth at entry and odds of surviving

Table 5: Net worth and survival, total over 0 − h, coefficients from regression equation (6)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
sur 1 sur 2 sur 3 sur 4 sur 5 sur 7 sur 9 sur 11 sur 13 sur 15

1.nw n -0.00539∗∗∗ -0.0197∗∗∗ -0.0482∗∗∗ -0.0837∗∗∗ -0.0978∗∗∗ -0.102∗∗∗ -0.105∗∗∗ -0.0967∗∗∗ -0.0796∗∗∗ -0.0518∗∗∗

(-4.28) (-7.60) (-13.14) (-18.79) (-19.63) (-18.07) (-17.68) (-15.97) (-13.35) (-9.56)

2.nw n 0.00185 -0.00178 -0.00954∗∗ -0.0251∗∗∗ -0.0268∗∗∗ -0.0332∗∗∗ -0.0409∗∗∗ -0.0392∗∗∗ -0.0261∗∗∗ -0.0105
(1.67) (-0.73) (-2.76) (-5.94) (-5.61) (-5.98) (-6.83) (-6.34) (-4.25) (-1.86)

4.nw n 0.000340 0.000802 0.0141∗∗∗ 0.0218∗∗∗ 0.0287∗∗∗ 0.0379∗∗∗ 0.0383∗∗∗ 0.0373∗∗∗ 0.0382∗∗∗ 0.0301∗∗∗

(0.29) (0.33) (4.31) (5.55) (6.35) (7.09) (6.50) (6.02) (6.05) (5.06)

5.nw n -0.000279 0.0118∗∗∗ 0.0306∗∗∗ 0.0418∗∗∗ 0.0505∗∗∗ 0.0708∗∗∗ 0.0784∗∗∗ 0.0809∗∗∗ 0.0772∗∗∗ 0.0532∗∗∗

(-0.23) (5.09) (9.49) (10.67) (11.11) (13.14) (13.10) (12.72) (11.71) (8.33)

cons 0.988∗∗∗ 0.946∗∗∗ 0.887∗∗∗ 0.817∗∗∗ 0.763∗∗∗ 0.660∗∗∗ 0.566∗∗∗ 0.472∗∗∗ 0.365∗∗∗ 0.253∗∗∗

(1199.98) (557.31) (370.76) (284.10) (232.33) (171.23) (135.04) (108.15) (83.16) (61.72)
N 87199 81968 76775 66098 62991 57292 52205 47406 42029 37040
adj-r2 0.00998 0.0735 0.126 0.261 0.244 0.243 0.255 0.280 0.307 0.354
Sector FE yes yes yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes yes yes
Age 0 size FE yes yes yes yes yes yes yes yes yes yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Note: sur X gives the survival odds from entry until horizon X and nw w stands for net worth per worker
with 1 being the lowest quintile and 5 being the highest quintile. Middle quintile used as the base group.

Table 6: Net worth and survival, marginal at horizon h , coefficients from (6)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
sur2 1 sur2 2 sur2 3 sur2 4 sur2 5 sur2 7 sur2 9 sur2 11 sur2 13 sur2 15

1.nw n -0.00539∗∗∗ -0.0149∗∗∗ -0.0311∗∗∗ -0.0362∗∗∗ -0.0266∗∗∗ -0.0135∗∗∗ -0.0204∗∗∗ -0.00876 -0.00776 -0.00357
(-4.28) (-6.42) (-10.51) (-10.84) (-7.55) (-3.64) (-4.90) (-1.95) (-1.42) (-0.55)

2.nw n 0.00185 -0.00348 -0.00703∗ -0.0152∗∗∗ -0.00491 -0.00529 -0.0149∗∗∗ -0.00480 0.00181 -0.00198
(1.67) (-1.59) (-2.57) (-4.89) (-1.53) (-1.50) (-3.72) (-1.11) (0.36) (-0.32)

4.nw n 0.000340 -0.0000722 0.0116∗∗∗ 0.00861∗∗ 0.00954∗∗ 0.00818∗ 0.00444 0.00695 0.00848 0.00599
(0.29) (-0.03) (4.58) (3.08) (3.18) (2.52) (1.25) (1.78) (1.80) (1.03)

5.nw n -0.000279 0.0123∗∗∗ 0.0213∗∗∗ 0.0160∗∗∗ 0.0153∗∗∗ 0.0148∗∗∗ 0.0130∗∗∗ 0.0135∗∗∗ 0.0178∗∗∗ 0.0134∗

(-0.23) (6.14) (8.67) (5.79) (5.13) (4.68) (3.74) (3.58) (3.92) (2.36)

cons 0.988∗∗∗ 0.958∗∗∗ 0.941∗∗∗ 0.939∗∗∗ 0.944∗∗∗ 0.949∗∗∗ 0.954∗∗∗ 0.956∗∗∗ 0.955∗∗∗ 0.953∗∗∗

(1199.98) (633.46) (500.77) (455.45) (426.40) (394.22) (367.63) (329.62) (269.65) (219.99)
N 87199 80857 72163 57143 50217 39313 30537 22971 15852 9761
adj-r2 0.00998 0.0691 0.0820 0.151 0.0556 0.0497 0.0435 0.0771 0.0565 0.202
Sector FE yes yes yes yes yes yes yes yes yes yes
Time FE yes yes yes yes yes yes yes yes yes yes
Age 0 size FE yes yes yes yes yes yes yes yes yes yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Note: sur X gives the survival at horizon X and nw w stands for net worth per worker with 1 being the
lowest quintile and 5 being the highest quintile. Middle quintile used as the base group.

B.6 Demographics
Figure 10 presented the relationship between the current size and the starting size bin (both
ways). Additionally, here we also present the transitional odds when ignoring firm age.

13



Figure 28: Unconditional transition rates based on the current size bin
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Note: This figure shows the transition odds based on the current size of a firm going x years to the future.
Unlike in the first row of figure 10, here we do not limit ourselves only to current entrants.

Conditional on starting size, exit rates follow similar pattern, spiking at age between
3-5 and falling afterwards. This means, that unconditionally on age, size at the time of entry
does not predict exit rate very strongly (because of our definition of exit, all firms exit with
zero workers and hence at the point of exit they are in size bin 1).

Figure 29: Exit rates conditional on entry size bin
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(b) cumulative

Note: This figure shows implied exit rates conditional on size at the point of entry, computed from the
data underlying Figure 10. Note that the exit year is the year after the final positive sales or employment is
observed. For example, a firm that enters (age 0) in March 2005 and is active for 9 months until December
2005, would be recorded as exited in 2006 when aged 1.
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C Returns to scale estimation appendix
Here we present the differences in estimation methodologies. Specifically, we compare our
baseline GNR to OP and to LP with ACF. There are two specification differences between
our implementations of the baseline and the two alternative methods. The latter two use
value added instead of sales as the left-hand side variable (and therefore intermediates do
not enter as a factor of production) and they are estimated using standard Cobb-Douglas
production functions (unlike GNR where we use a translog production function).

The general pattern in returns to scale is consistent across all specifications: RTS are
increasing in size with the largest difference being between the first two size groups. The
results for productivity are not the same between the baseline GNR and OP/LP. While it is
true that the largest firms are always the most productive, the methods do not agree on the
gradient of productivity with respect to size among the smallest firm bins. However, this
discrepancy is much smaller in the cross-section of the results than when the size and age
effects are estimating in a regression setting with additional sectoral fixed effects.

C.1 Estimation Methodology
Production function estimation is challenging because of long-recognized endogeneity prob-
lems (Marschak and Andrews, 1944; Griliches and Mairesse, 1995): it is at least plausible
that firms are able to respond to shocks that are unobservable by the econometrician. If
so, firms are likely to choose to use more of the flexible inputs at favorable times. For the
econometrician, however, this introduces correlation between some of the inputs and the
error terms, leading to endogeneity bias.

The methods such as OP, LP, ACF, and GNR recognize this bias and use different in-
sights from the firm problem to overcome it. The basic insight is that some factors such as
capital are likely fixed in the short term and so they cannot respond to current productivity
shocks. In contrast, other inputs (labor for OP and LP, intermediates for GNR) are flexible
and hence it is possible for a firm to change their usage to respond to a shock. Further-
more, the economic problem of a profit maximizing firm is used to derive a additional set
of moments. In particular, if a firms is able to observe a part of the productivity realization,
it would react with its investment (as in OP) or with intermediate inputs (LP and GNR).
Given this insight and the assumptions about the stochastic process of firm productivity,
one can derive conditions that can be used to identify the parameters of the production
function.

Table 7: Overview of methods used to estimate returns to scale

method output variable fixed variables free proxy prod function

Gandhi et al. (2020) sales capital, labor intermediates intermediates translog
Olley and Pakes (1996) VA capital labor investment C-D
Levinsohn and Petrin (2003) VA capital labor intermediates C-D

Implementation. For OP and LP we useprodest package (Rovigatti and Mollisi, 2016).
For GNR we base our estimation on their replication package (Gandhi et al., 2020). To
follow the standard setting, we use translog production function for GNR estimated on
sales and Cobb-Douglas for OP and LP with value added as the left-hand side variable.

15



C.2 RTS Data construction
When estimating value added production functions, the following data is used. For the OP
method, the “proxy” variable is investment, whereas for the LP method, the proxy variable
is intermediate inputs. For the “free” variable, labor, full-time equivalent employees are
used.

C.2.1 Variables

Inputs. Capital is always a “state” variable and it is constructed by the perpetual inven-
tory method using investments and the bookkeeping value of capital. Specifically, an initial
capital level is determined as the highest of either reported capital or investments divided
by an assumed depreciation rate of 10%. For subsequent years, capital is determined by
the highest of either reported capital or the depreciated capital determined in the previous
year plus investments. If there are any gaps in the series of any variable used in the pro-
duction function estimation, the capital series is re-based with a new firm identifier. We
use the full time equivalent number of workers (the main cyclicality variable) to measure
firm employment input.

Intermediates. Intermediates are measured as “Purchase of raw materials, consumables,
finished products and packaging” minus the change in stock of inventories from FIRE reg-
ister provided by Statistics Denmark. Specifically, the variable definitions change over
time, so use khr-dlg for years prior 2004, khre+kvv-dlg for 2004 to 2016 and frhe+fvv
from 2017 on-wards. To compute the real use of inventories, we deflate the nominal val-
ues by sector-specific producer price index for inputs obtained from IO data collected by
Statistics Denmark.

Sectoral deflation is applied to value added, intermediates, investments, and capital us-
ing sector-level producer price index (PPI) data obtained from Statistics Denmark. Sectoral
PPI data is published for varying levels of classification specificity. If several levels of PPI
data are published for the sector of a given firm, the level with the highest frequency is
used. If more levels have the same frequency, the most specific level is used. For the base-
line results using GNR methodology, we construct the intermediate share as the share of
nominal intermediate inputs relative to nominal sales.

C.2.2 Sectoral prices

First, we introduce some notation. There are N sectors, in each sector there are Ns firms.
Firms are indexed by i, so that ∀i = 1, . . . , Ns in sector s we have

salesi,t = pi,tyi,t,
intermi,t = ϕi,tmi,t.

sales and (expenditures on) intermediate inputs interm are directly observable in the micro
data. However, we are interested in the physical m to properly estimate the production
function and hence returns to scale. Sales and intermediates can be further split by the
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trading partner (firm j):

salesi,t = pi,tyi,t = ∑
j

pi,j,tyi,j,t,

intermi,t = ϕi,tmi,t = ∑
j

ϕi,j,tmi,j,t.

Note that pi,j,t = ϕj,i,t and yi,j,t = mj,i,t by definition. In aggregate, we observe producer
price indeces for each sector ps

t . Second, IO table captures the value of the flow goods
purchased in sector sdest coming from ssource in a given year:

fssource,sdest = f (s, d) = ∑
i∈dest,j∈source

ϕi,j,tmi,j,t = ∑
i∈dest,j∈source

pj,i,tyj,i,t

Now we introduce two assumptions about pricing behavior and the use of intermedi-
ates, which we use to reverse engineer intermediate input quantities.

Assumption 1 All firms in a given sector sell output at the same price, regardless of the buyer:
∀i ∈ sector s and ∀j ∈ d : pi,j,t = pt(s) and ϕj,i,t = ϕt(s).

Assumption 2 All firms in a given sector use the intermediates in the same proportion.

Using the first assumption, all firms that are buying intermediate inputs of sector s are
buying it at the same price, hence

ft(s, d) = ϕt(s) ∑
i∈dest,j∈source

mi,j,t = pt(s) ∑
i∈dest,j∈source

yj,i,t

if p(s) is the producer price index associated with production of ys for intermediate use,
we have y(s, d) = m(s, d) and ϕ(s) = p(s), so the previous equation can be simplified to:

f (s, d) = p(s)m(s, d).

Note that two out of the three terms are observable in the data: f (s, d) is observable from
IO tables, and ps

t is the producer price in sector s.Let’s define the total expenditures on
intermediates in sector d as f (d) = ∑s f (s, d). By Assumption 2, the share of resources on
intermediates from particular sector is the same in the aggregate and on firm level:

f (s, d)
f (d)

=
ϕ(s)mi(s, d)

∑s ϕ(s)mi(s, d)

however, note that ∑s ϕ(s)mi(s, d) is the value of intermediate inputs which is observed.
So this equation can be re-organised to get

mi(s, d) = intermi,t
f (s, d)
f (d)

1
p(s)

which gives the (physical) amount of the intermediate output of type s used by a firm that
uses intermi,t in sector d.

The total (physical) use of intermediates is then

mi,t = ∑
s

mi(s, d) =
intermi,t

f (d) ∑
s

ft(s, d)
pt(s)

and all the terms on the right hand side of the equation are observable.

17



C.3 Production function estimation, results for productivity
While we find that RTS are increasing with firm size, the relationship between size and
productivity is non-monotonic. It is initially increasing, but may even decline with size for
large firms as shown in Figure 30.

Figure 30: Productivity by current size
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(a) Size and age effects, productivity
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Note: Firm level productivity is computed as the residual from production function estimation. Panel (a)
shows the age and size effect from regression (1), panel (b) shows the median, mean and the interquartile
range of estimated productivity across the size bins.

C.4 Alternative partitioning of the firm sample when estimating rts
Partitioning the sample is an important step in estimating the production function as within
each “cell”, the production function coefficients will be shared by all firms. Furthermore,
in the case of Cobb-Douglas production function, Y(L, K) = ALβKα, the returns to scale
RTS = α + β will be also the same for all firms within the cell. For translog production
functions, log Y = α0 log A + ∑N

i=1 αi log Xi +
1
2 ∑N

i=1 ∑N
j=1 βij log Xi log Xj, the returns to

scale are not constant and change with the level of inputs X. This implies that for Cobb-
Douglas production function estimated at 2 digit sectoral classification, with no further
partitioning, any gradient with respect to size can only come from the changes in sectoral
composition across the size distribution. As discussed in the main text, this is why we ad-
ditionally partition our estimates by maximum-size groups within each sector. Even with
a Cobb-Douglas production function and focusing within a single sector this approach
would allow us to investigate differences in RTS across firm size groups.
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Figure 31: Returns to scale by current size by method of estimation
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Note: This figure shows RTS estimates by size for three estimation methods (rows: GNR-baseline, OP and
LP) and two sample partitioning: by max size (first row - baseline) and no additional partitioning (beyond 2
digit sectors).
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Figure 32: Productivity by current size by method of estimation
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Note: This figure shows productivity estimates by size for three estimation methods (rows: GNR-baseline,
OP and LP) and two sample partitioning: by max size (first row - baseline) and no additional partition-
ing (beyond 2 digit sectors). The level difference between GNR and OP/LP is given by a difference in the
underlying production function.
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C.5 Relation to existing empirical findings about RTS heterogeneity
A recent literature, some emerging since we submitted the paper, provides new comple-
mentary evidence on heterogeneity in returns to scale. In an early contribution, Gao and
Kehrig (2021) estimate RTS at the industry level and show that larger industries have
higher RTS. Smirnyagin (2023) also shows that larger industries have higher RTS using
US manufacturing data, and provides evidence that the entry rate of firms in higher RTS
industries is more procyclical. Relative to these approaches we provide firm-level RTS es-
timates using the Gandhi et al. (2020) approach and/or OP/LP/ACF additionally running
the estimation splitting the firms by their maximum achieved size. Hubmer et al. (2024) es-
timate RTS at the firm level also using the approach of Gandhi et al. (2020). We go beyond
Gandhi et al. (2020) by also partitioning the sample by the maximum size a firm achieves
during its lifetime. Including our own, all these papers find that large firms (or industries
with higher firm size) have higher RTS, which is reassuring validation of our empirical
finding.

Another way to interpret heterogeneous RTS is as a heterogeneous demand elasticity. In
particular, with a CES demand curve it is well-known that the demand elasticity acts iso-
morphically to RTS in the production function, if one focuses only on data for sales (and not
real quantities) as we do. In our model, we could assume that all firms have constant RTS
in production but heterogeneous demand elasticities which drive differing levels of RTS in
revenue. This would mean that small firms charge higher markups than large firms, based
on the usual result that inelastic demand leads to higher markups: recall the standard static
result that the optimal markup is equal to µ = ϵ/(1 − ϵ) = 1/θ. This interpretation allows
us to use data on average markups by firm size to interpret our finding of more decreas-
ing returns to scale at small firms. If markups are higher at small firms than large firms,
this would provide additional support. Indeed, this appears to be the case in the data.
Dı́ez et al. (2021) compute markups for both private and public firms using the global Or-
bis dataset, for a set of firms accounting for 70% of global GDP. They find that there is a
U-shaped relationship between markups and firm size, and that markups are decreasing
with firm size for most of the size distribution: “Contrary to common wisdom, we find that,
unconditionally, smaller firms have higher markups even within narrowly defined industries—only
when we focus on very large firms we do find a positive relation... markups first decrease with firm
size and only when a (fairly large) size threshold is reached, markups start increasing with firm size”
(p2).
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D Analytical model appendix
D.1 Model details: Firm size, firm age and life-cycle dynamics
Firms receive an initial equity injection at birth giving them initial net worth n0. This
along with their permanent productivity and returns to scale (z, η) is drawn from a CDF
Ge(n0, z, η). Firms enter at exogenous rate µ0 and exit at exogenous rate ζ, so the total mass
of firms M is fixed at M = µ0/ζ, and we suppress the firm subscript i ∈ [0, M].

Net worth evolves according to

ṅt = atzkη
t − (δ + r + wt)kt + rnt − dt (10)

where dnt
dt ≡ ṅt, and dt ≥ 0 is the firm’s dividend payout.49 To finish characterizing the

firm’s problem requires specifying a dividend policy. A full model of dividend payout
requires specifying the firm’s dynamic problem (as we do in the quantitative section) as
the decision to pay out dividends depends on the relative value to the firm of retaining
funds inside the firm versus paying them out. We simplify the problem by assuming that
firms pay out dividends once their net worth becomes sufficiently large. Specifically, if their
leverage falls below some level ϕ (implying net worth rises above nt(z, η) ≡ ku

t (z, η)/ϕ)
we assume they pay out dividends to immediately return leverage to this target level.50

Firm age. We begin with a brief description of the firm life-cycle in this model, focusing on
a world without aggregate shocks where at = 1, ϕ̄t = ϕ̄, and the wage takes a fixed value
wt = w. By assumption, firm-level productivity and returns to scale do not change as firms
age, so the life-cycle is determined entirely by the evolution of net worth, nt. In this section
we index firm age by co-opting the time index t, with firms born at age t = 0. We discuss
the firm life-cycle for a generic firm, who is assumed to be born with sufficiently low initial
net worth so as to be financially constrained at birth: n0 < n̄(z, η).

The firm life-cycle is characterized by three regions. In the first region, from birth until
some age tu, the firm cannot afford the unconstrained level of capital. Leverage is at the
borrowing limit, and as the firm accumulates retained earnings their net worth and capital
grow. The second region is from age tu to td. They enter it once their net worth reaches
n̄(z, η) and the firm can afford the unconstrained level of capital, so their capital stops
growing. As they continue to earn profits and retain earnings, their net worth continues
to increase which allows them to begin lowering their leverage ratio. This continues until
they lower leverage to the point they start paying dividends, at leverage ϕ and net worth
n. This happens at age td, defining the end of the second region and beginning of the third.
In this region the firm pays dividends, and net worth stops increasing.

49To derive this, consider a discrete time model with period length ∆t. Between periods t and t + ∆t net
worth evolves according to nt+∆t = atzkη

t ∆t − wtkt∆t + (1 − δ∆t)kt − (1 + r∆t)bt − dt∆t, where the produc-
tion flow, interest rate, and depreciation rate are all scaled with the length of a period. Combining this with
the balance sheet nt = kt − bt gives nt+∆t − nt = atzkη

t ∆t − wtkt∆t − (δ + r)∆tkt + r∆tnt − dt∆t. Diving by
∆t and taking the limit as ∆t → 0 gives (10).

50This dividend policy can be shown to be optimal under certain model assumptions. Following the logic
of the minimum savings policy in Khan and Thomas (2013), if firms discount the future at the risk free
rate, there exists a level of net worth below which they do not pay dividends, and above which they are
indifferent about paying dividends. In our simple model, if (at, ϕ̄t) were constant firms would be indifferent
about paying out dividends the moment their leverage falls below ϕ̄. In general, as long as ϕ is chosen to be
within the true minimum saving policy region, this policy is optimal.
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What this emphasizes in a stark way is how firm age is a helpful proxy for the firm’s
financial position. However, not all young firms are necessarily financially constrained,
since firms born with initial net worth n0 > n̄(z, η) can jump immediately to their optimal
capital. This highlights the importance of directly measuring, net worth, leverage, and firm
growth to investigate the role of financial frictions, even among young firms. In particular,
if a young firm has high and declining leverage, and their size increases as they age, this is
consistent with a binding borrowing constraint for that firm in our model.

D.2 Proofs

Effect of at and ϕ̄t on aggregate output. Aggregate output and labor are:51

Yt =
∫

unc
atz
(

ηatz
δ + r + wt

) η
1−η

dGt(n, z, η) +
∫

cons
atz(ϕ̄tn)ηdGt(n, z, η) (11)

Lt =
∫

unc

(
ηatz

δ + r + wt

) 1
1−η

dGt(n, z, η) +
∫

cons
(ϕ̄tn)dGt(n, z, η) (12)

Equilibrium is given by (12) and the wage equation wt = χ(1+ ηL)LηL
t , and given wt we can

then solve for Yt from (11). Start with the response to a productivity shock. Differentiating
(12) and the wage equation gives

dLt

dat
= L′(at) =

(δ + r + wt)/at − w′(at)

δ + r + wt
Xu (13)

w′(at) = ηLχ(1 + ηL)L′(at)LηL−1
t (14)

where Xu =
∫

unc
1

1−η

(
ηatz

δ+r+wt

) 1
1−η dGt(n, z, η) > 0. Combine:

L′(at) =
(δ + r + wt)/at − ηLχ(1 + ηL)L′(at)LηL−1

t
δ + r + wt

Xu (15)

Rearranging establishes that L′(at) > 0. If ηL > 0 then w′(at) > 0, while if ηL = 0 then
w′(at) = 0. Differentiating (11) gives

dYt

dat
= Y′(at) =

Yt

at
+ at

(δ + r + wt)/at − w′(at)

δ + r + wt
Zu (16)

where Zu =
∫

unc z η
1−η

(
ηatz

δ+r+wt

) 1
1−η dGt(n, z, η) > 0. Since L′(at) > 0, (13) implies that

(δ + r + wt)/at − w′(at) > 0. Inspecting (16), this implies that Y′(at) > 0.
Moving on to the financial shock, equivalent steps establish that Y′(ϕ̄t) > 0, L′(ϕ̄t) > 0,

and that if ηL > 0 then w′(ϕ̄t) > 0, while if ηL = 0 then w′(ϕ̄t) = 0.

Conditions under which unconstrained size is increasing in RTS. To ease notation, con-
sider a steady state without aggregate shocks where at = 1 and we drop the t subscript.
For firms old enough to be financially unconstrained, their size, measured as input use k,

51Aggregate output is Yt =
∫

atzkt(n, z, η)ηdGt(n, z, η) and we split the integral using cons and unc to refer
to constrained and unconstrained firms. Note that since at the margin of being constrained or unconstrained
ku

t (z, η) = kc
t(n), the endpoint terms in the Leibniz rule for any derivatives cancel out.
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is unconstrained optimum ku(z, η). Clearly, higher productivity leads to larger size: Dif-

ferentiating (2) gives ku
z (z, η) = 1

1−η z
η

1−η (η/(δ + r + w))
1

1−η > 0.
What is the effect of returns to scale, η, on size? Intuitively, firms with higher returns to

scale should choose a larger optimal size, since their profitability falls less as they expand.
This turns out to be true, but only under a minimal assumption that firms are sufficiently
productive to begin with. A sufficient condition for size to be increasing in returns to scale
(i.e. ku

η(z, η) > 0) is that z ≥ z̄, where z̄ ≡ δ + r + w. This can be seen most clearly

by taking the semi-elasticity ∂ log ku(z,η)
∂η = 1

η(1−η)
+ 1

(1−η)2 (log η + log z − log(δ + r + w)),
which shows that the effect of RTS on size is actually ambiguous. To build intuition, take
the limiting case of CRS, where η = 1 and static profit is (z − δ − r − w)k. Then we know
that firms with z > z̄ would choose infinite optimal size ku → ∞ while firms with z < z̄
would shrink to k = 0. Hence if we start from η < 1, where all firms have finite optimal
size, and move to η = 1 then z > z̄ firms will expand to infinity and z < z̄ will shrink
to zero, demonstrating the ambiguous effect of RTS on optimal size. Inspecting the semi-
elasticity shows that z ≥ z̄ is sufficient for ku

η(z, η) > 0.

High RTS firms take longer to outgrow borrowing constraints. We continue to work in
an aggregate steady state, and prove the following proposition. Consider firms with the
same unconstrained optimal size, ku(z, η), but different RTS, η. Suppose they are currently
financially constrained and have net worth nt a fraction ωt ≡ nt/n̄(z, η) < 1 of the amount
required to be financially unconstrained. The higher a firm’s RTS, the slower the current
growth rate of its net worth, and hence capital.

Since ku(z, η) =
( ηz

δ+r+w
) 1

1−η , firms with different RTS but same ku(z, η) must have dif-
ferent productivities, z. Their net worth grows according to (10). Use the definitions of ωt
and n̄(z, η) to replace nt with nt = ωtku(z, η)/ϕ̄ and replace z using the formula for ku(z, η)
to yield

ṅt

nt
=

(
1

ηω
1−η
t

− 1

)
(δ + r + w)ϕ̄ + r > 0 (17)

where net worth growth is positive because ωt < 1 and η < 1. Most importantly, holding
the current net worth deficit ωt fixed, d( ṅt

nt
)/dη < 0. This means that if we compare two

firms with the same optimal size and current net worth, net worth grows more slowly for
the higher RTS firm. This is because higher RTS reduces the excess profits made when
firms are below optimal scale. One can also interpret higher RTS as being equivalent to
more elastic demand for the firm’s products, and hence lower markups. If one models
large firms as having higher RTS, this does not say that net worth for large firms should
grow more slowly than for small firms, since we hold size constant in the exercise. Instead,
it says that large firms will grow more slowly than if you instead modelled large firms as
having the same RTS as small firms but higher productivity.

Aggregate labor unresponsive to financial shock if there exist unconstrained CRS firms.
Suppose that there exist firms with constant RTS, η = 1, in the model. If these firms are
financially unconstrained their optimal capital choice has the usual “bang bang” solution:
kc

t(z, 1) = ∞ if atz > δ + r + wt, kc
t(z, 1) = 0 if atz < δ + r + wt, and indifferent about any

level of capital (i.e. kc
t(z, 1) indeterminate) if atz = δ + r + wt. Assume that all firms with
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η = 1 have the same z. If a positive mass of these firms is financially unconstrained, then
they pin down the wage as wt = atz − δ − r. The household’s labor supply condition then

pins down aggregate labor as wt = χ(1 + ηL)LηL
t =⇒ Lt = ((atz − δ − r)/(χ(1 + ηL)))

1
ηL .

Notice that Lt depends only on the productivity shock, at, and not on the distribution of
resources across firms or the financial shock ϕ̄t. Intuitively, if the financial constraint is
tightened, the unconstrained CRS firms can perfectly expand to keep labor fixed at de-
sired labor supply given the fixed wage. This equilibrium is valid as long as the group of
CRS firms collectively has enough net worth to finance the gap between Lt and the labor
demanded by constrained firms.

E Quantitative model appendix
E.1 Further model details

Investment good firms. A representative capital producing firm purchases the final good
and converts it into capital which it sells to firms at price pK,t. In particular, to create It
units of new capital the capital producer must purchase It units of output and then pay an

additional cost ψK
2

(
It
Kt

− δ
)2

Kt denominated in the final good. This is a quadratic cost of
deviating the investment rate away from the steady state investment rate, I/K = δ, which
is scaled by the size of the capital stock. ψK controls the degree of adjustment costs. The
capital producing firm’s maximization problem can be stated as:

πK
t = max

It
pK,t It − It −

ψK

2

(
It

Kt
− δ

)2

Kt (18)

The first order condition for investment implies that the equilibrium capital price is linear
in the investment rate:

pK,t = 1 + ψK

(
It

Kt
− δ

)
(19)

Note that by choosing to have the quadratic cost paid for investment rates away from
steady state, we ensure that the capital price is normalized to pK = 1 in steady state.
For a given level of investment, the total resources spent on adjustment costs are ACt =
ψK
2

(
It
Kt

− δ
)2

Kt.

Entry cost distribution. We parameterize the entry cost CDF as Ge
s(ξ) = ae,sξ

be on support
ξ ∈ [0, a−1/be

e,s ], giving PDF ge
s(ξ) = beae,sξ

be−1. As long as the entry values satisfy ve
s ∈

[0, a−1/be
e,s ] at all times, ae,s and Me

s are not separately identified, and we can directly estimate
me

s. We follow this approach, and implicitly assume that ae,s is chosen such this condition
holds in the neighborhood of the steady state. The total flow of entry costs incurred by
firms who choose to enter is then

EC = ∑
s

Me
s

∫ ve
s

ξ=0
ξbeae,sξ

be−1dξ = ∑
s

me
sbe

∫ ve
s

ξ=0
ξbe dξ = ∑

s

me
sbe(ve

s)
be+1

be + 1
(20)

Aggregate fixed cost spending. This is the sum of the fixed cost paid by all shocked firms
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who decide not to shut down: FC =
∫

n,s,g,j αω

∫ ω̄(n,s,g,j)
ω=0 ωdF(ω, s)dG(n, s, g, j).

Proof that firms do not pay positive dividends until exit. Differentiate the value func-
tion (8) with respect to n and apply the envelope condition. The Lagrange multiplier on
the borrowing constraint pKk ≤ ϕ̄n implies that vn(n, s, j) > 1 whenever the borrowing
constraint is binding. Moreover, if the borrowing constraint is not binding and expected
never to bind again then vn(n, s, j) = 1. However, inspection of the equations reveals that
the borrowing constraint may always bind in the future for a bad enough sequence of fixed
cost shocks ω, which would lower n back into the region where the borrowing constraint
binds again. Even if this happens with very low probability it drives vn(n, s, j) > 1 at all
times and firms optimally never pay dividends.

Representative household problem. The representative household owns all firms in the
economy, as well as consuming and supplying labor. Firms discount the future using the
household’s stochastic discount factor. Since we consider only steady states and deter-
ministic transitions to unanticipated shocks (“MIT shocks”) the stochastic discount factor
is simply equal to the risk free interest rate rt. Here we formally derive the household
optimality conditions determining the equilibrium interest rate and wage for the closed
economy case. Let Bt denote household saving in a risk free bond with interest rate rt. The
household’s budget constraint reads Ḃt = wtLt + rtBt + Dt − Ct, where Dt is the house-
hold’s net receipts from firm ownership. In a world without aggregate uncertainty, we can
state the household’s problem recursively as

ρW(B, t) = max
C,L

1
1 − ηC

(
C − χL1+ηL

)1−ηC
+ WB(B, t) (wtL + rtB + Dt − C) + Wt(B, t)

(21)
where we allow the value function to depend directly on time t to allow for arbitrary dy-
namics of equilibrium prices. W(B, t) is the household value function and WB(B, t) and
Wt(B, t) derivatives with respect to its first and second argument. The first order con-

ditions with respect to consumption and labor yield
(

Ct − χL1+ηL
t

)−ηC
= WB(B, t) and

(1 + ηL)χLηL
t

(
Ct − χL1+ηL

t

)−ηC
= wtWB(B, t), where Ct ≡ C(B, t) and Lt ≡ L(B, t) are

shorthand for the optimized consumption and labor choice. Combining these gives opti-
mal labor as Lt = (wt/(χ(1 + ηL)))

1/ηL . Conversely put, the equilibrium wage satisfies

wt = (1 + ηL)χLηL
t (22)

Let Ċt and L̇t be the total derivatives of the consumption and labor functions with respect
to time, i.e. Ċt ≡ Ct(B, t) + ḂtCB(B, t) and L̇t ≡ Lt(B, t) + ḂtLB(B, t), where Ḃt ≡ Ḃ(B, t)
is the optimized asset drift. To derive the equilibrium interest rate, first differentiate (21)
with respect to B to yield

ρWB(B, t) = WBB(B, t)Ḃt + rtWB(B, t) + WtB(B, t) (23)

Totally differentiate
(
C(B, t)− χL(B, t)1+ηL

)−ηC = WB(B, t) with respect to t to yield

−ηC
(
Ċt − (1 + ηL)χL(B, t)ηL L̇t

) (
C(B, t)− χL(B, t)1+ηL

)−ηC−1
= WBt(B, t) + ḂtWBB(B, t)

Using WBt(B, t) = WtB(B, t) and combining the two equations yields the continuous time
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Euler equation for consumption under GHH preferences:

rt = ρ + ηC
Ċt − (1 + ηL)χLηL

t L̇t

Ct − χL1+ηL
t

(24)

Definition of equilibrium. The definition of equilibrium is standard. We state first the
definition in the stationary equilibrium without aggregate shocks in a closed economy (i.e.
NXt = 0). This is given by prices (r, w, pK) such that

1. The representative household and investment good firm optimality conditions hold.
This implies that aggregate prices satisfy (19), (22), and (24) in steady state, giving
r = ρ, pK = 1, and w = (1 + ηL)χLηL .

2. Firms optimize given prices, solving the problem in (8), giving policy functions in-
cluding k(n, s, j), l(n, s, j), and d(n, s, j), and value function v(n, s, j). This induces a
firm entry flow of µ0 = MeGe(ve), and an ergodic distribution G(n, s, j) over firms.

3. Prices clear the goods, labor, and capital markets. In particular, labor demand equals
labor supply such that L =

∫
l(n, s, j)dG(n, s, j). Aggregate capital and output are

K =
∫

k(n, s, j)dG(n, s, j) and Y =
∫

y(n, s, j)dG(n, s, j), I = δK, and goods market
clearing gives Y = C + I + FC + AC + EC.

For aggregate transition experiments the definition is similar. We now solve for price se-
quences {rt, wt, pK,t} which are determined via the dynamic equations (19), (22), and (24)
which depend on the paths for aggregate variables. Consumption satisfies goods market
clearing at all dates, such that Yt = Ct + It + FCt + ACt + ECt, which determines the equi-
librium interest rate. The wage clears the labor market clears at all dates, and the capital
price is consistent with the first order condition of the investment goods firms. The firm
problem is identical except that firm value is a function of time, vt(n, s, j), and firms ac-
count for the time-paths of prices in their continuation values. For the open economy case
the definition is similar except that the interest rate takes the exogenous world rate at all
times and net exports NXt adjust to clear the goods market.52

E.2 Calibration

Calibration procedure. Parameters are either pre-set to a known value, or chosen to ex-
actly hit one moment using an associated parameter. We use an iterative updating scheme,
and stop once all moments are hit with 10% tolerance or less. There are 34 parameters of
the model, which are given in Table 11, with each associated moment given in the Source
column. We start by describing our relatively standard parameters. We take one unit of
time to be one year. We set the interest rate r to a 4% annual real interest rate. The capital
depreciation rate δ is set to a 10% annual rate.53 We choose the labor to capital ratio α to

52A helpful property of GHH in our context is that we can solve for the equilibrium path of wages, labor,
and output (and all firm-level objects) without reference to the path for consumption and hence the split of
output between consumption and net exports. If desired, the consumption path can be solved as follows.
The household’s consumption path still satisfies the Euler equation, with the initial level C0 determined by
the economy’s intertemporal budget constraint given the time-0 financial position relative to the rest of the
world. The level of net exports NXt then clears the goods market at all dates.

53Since one unit of time is one year, we convert the annual rate X into the continuous time flow x using
x = − log(1 − X).
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generate a labour share in total firm costs of 2/3. The labor supply disutility χ is chosen to
normalize the steady state wage to one. The labor supply elasticity ηL is set to 0.3, which
implies a Frisch elasticity of 3.33 in line with the typical values used in macro calibrations.54

In our baseline exercises choose ψK to set an elasticity of the capital price to the investment
rate of 0.25 following Brinca et al. (2016) and Ottonello and Winberry (2020). For some
exercises we keep capital prices fixed (ψK = 0) or experiment with different values.

We specify the firms’ idiosyncratic shock process π J
j,j′ as follows. Shocks arrive on av-

erage once per year, and when drawn new values come from an AR(1) process discretised
with J = 2 nodes.55 To remain close to Khan and Thomas (2013), we fix the annual auto-
correlation at their value of 0.659, which is the range of usual values, and normalize the
mean to one. We choose the standard deviation to match the standard deviation of log
employment among large, old firms in our dataset. More details are given below.

We calibrate the exit process to generate the higher exit rate of young firms in the data.
The arrival rate of the stochastic fixed cost shock, αω, is chosen to match the exit rate of
firms at age 0 relative to at age 16+. We use our own data and data from Andersen and
Rozsypal (2021) and calculate this ratio to be around 2. We use the exogenous exit rate
ζ to target an overall average exit rate of 5% per year, in line with the data. We seek a
simple parameterization of the exit cost function, F(ω, s). We let ω = κsω̃, where ω̃ is
drawn from an exponential distribution with unit variance. The size-type specific scaling
parameters κs are chosen so that sufficiently wealthy — and hence old — firms of each size
type effectively only exit at the exogenous rate ζ.56

We make a functional form assumption on the entry cost draw distribution Ge
s(ξ) so

that it takes the constant elasticity form Ge
s(ξ) = ae,sξ

be . be controls the elasticity of entry to
firm value, and is assumed to be equal for all size types to reduce our degrees of freedom.
We set be to ensure a sensible response of firm entry to aggregate shocks, and discuss this
further in our counterfactual experiments. The entry flow to each type is therefore µ0(s) =
me

s(ve(s))be , where we subsume Me
s and ae,s into the hyper-parameter me

s = Me
sae,s.57. We

set be = 7, which generates a reasonable decline in entry of around 30% in response to a
negative shock to borrowing constraint in both the steady state and business cycle financial
shock experiments.

The remaining parameters relate to the novel features of our study: heterogeneity in
returns to scale and disciplining the initial net worth of entrant firms, and were discussed
in the main text. We assume S = 5 permanent size types in the model, corresponding to
the five size bins in our empirical work. We use the me

s parameters to set the relative flow
of entrants into each size type, µ0(s)/µ0, to match the share of firms in each associated size
bin in the data, and normalize the number of firms in steady state to one. The net worth
distribution of entrants is chosen to provide a match to our data.

Estimation of the idiosyncratic shock process. Our procedure broadly follows that of
54Chetty et al. (2012) provide a meta analysis of values of the Frisch elasticity, finding an average 3.31 for

papers studying the macro elasticity.
55Specifically π J

j,j′ = αJπ̃
J
j,j′ where αJ = 1 is the arrival rate of a new draw, and π̃ J

j,j′ is the discretised
transition matrix of the AR(1) process.

56Specifically, we choose κs so that, for each s, firms with very high net worth only exit with 1% probability
in the event that the stochastic fixed cost shock arrives.

57As long as Ge
s(ve(s)) takes interior values in the steady state and during simulations, Me

s and ae,s are not
separately identified, as we discuss further in the appendix.
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Khan and Thomas (2013). Firstly, the autocorrelation of idiosyncratic shocks is known
to be hard to estimate, and Khan and Thomas (2013) choose an annual autocorrelation
of 0.659, which we do too. Since we are in continuous time, we first specify that firms
draw a new value of their idiosyncratic shock on average once a year, and that when they
do it is drawn from a discretised AR(1) process with autocorrelation ρI = 0.659, mean
µI = 1, and unconditional standard deviation σI . This leaves the standard deviation to
calibrate, which we choose to match the standard deviation of within firm employment
over time. Specifically, we regress employment in our data on firm and time fixed effects,
and compute the standard deviation of the residual, which gives a measure of how much
employment changes over time within a firm. To avoid issues of life-cycle growth, we do
so only for large and old firms in the data (120+ employees, age 16+ years), and do so
for old unconstrained firms from the largest size type in the model. We time-aggregate the
simulated data to form yearly employment, and compute the standard deviation, adjusting
σI to match the standard deviation of 22.6% in the data.

Numerical solution and simulation procedure. We solve the model using continuous
time numerical methods which draw on Achdou et al. (2021). We use their finite differ-
ence methods, and discretize the state variable n with a grid of 300 nodes, with a different
grid for each of the five size types since their net worth distributions are very different.58

Ergodic distributions and the aggregate simulations are calculated using the grid based
simulation procedure that forms part of the Achdou et al. (2021) method.

To solve transition paths of the economy to aggregate shocks, use the grid-based sim-
ulation approach of the Achdou et al. (2021) method, iterating over guesses of aggregate
price paths until the economy converges to the true transition path. This ensures an accu-
rate solution to our transition experiments, which does not rely on simulated data from a
finite number of firms.

When replicating our cyclicality regressions on model-simulated data, we construct
time-aggregated yearly data in such a way as to be comparable to our Danish data source.
We construct a panel of 100,000 firms, accounting for entry and exit, which we simulate
in response to the aggregate shocks. The policy functions of these firms are the policies
solved for exactly during the grid-based transition experiment. We aggregate the data up
to yearly frequency to make firm-year observations, and regress this data on the growth
rate of aggregate output, as done in our data work, using the same regression specification.
We generate 15 years of data from the model to use for our regressions, which contains the
single recession event driven by an MIT shock. Specifically, after a burn in period, we al-
low for 5 years of data pre shock, and then 10 years of data from the moment the shock hits
and through the economic recovery.

Calibration results. The model generates a very good match to the marginal age and
size distributions (by number of firms and employment) by construction. In Figure 33
we plot key features of the calibration across the joint age-size distribution. Panels (a)
and (b) give the firm and sales shares in the model, which are comparable to the data
from Figure 1. We directly compare the marginal age and size distributions in the model

58For each size type, the grids run linearly from n = 0 to some nmax
s = ku(s, J)/ϕ. At the maximum n, the

firm is forced to pay out dividends to maintain a capital to net worth ratio of ϕ = 1. Recall that firms never
optimally pay out dividends in this model. However, we choose a very high value of nmax

s and in practice
firms are nearly indifferent about paying dividends at this level of net worth.
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and data in Table 8 and see the fit (which was targeted for the size distribution and for
the average employment of the young firms) is very good. The model underpredicts the
average employment of old (16+) firms slightly, but does match that there continues to be
growth in average firm size between the ages of 6-15 and 16+. The model generates an exit
rate (panel f) which is decreasing in firm age, in line with the data. In Figure 39 we show
that exit rates are higher along the whole life-cycle for firms born with lower initial net
worth in our model, in line with the data from Figure 9, and highlighting that net worth
and finance are a key feature driving exit in the model. We plot an average life-cycle in
Figure 38, and the distribution of size-types across size bins in Table 10.

Figure 33: Firm shares and characteristics across age and size bins
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(d) Fraction constrained

[0-4] (4-12] (12-40] (40-120] (120+

size bins

0

10

20

30

40

50

60

70

%

0-5

6-15

16+

(e) Leverage (D/A)
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(f) Exit rate

Note: Characteristics of each joint age-size bin in the model.

A key use of the model, over directly studying the data, is that it gives us a theory of
financial constraints over the life-cycle. Figure 33(e) gives average leverage by age-size
bin. Leverage is declining in age, and roughly constant across size groups for the youngest
firms. Leverage falls less quickly with age for large firms, because they take longer to out-
grow their financial constraints due to their higher RTS and lower profit margins. This is
reflected in panel d, where a larger share of middle-aged large firms are financially con-
strained than middle aged small firms.

An untargeted success of the model is that it replicates well the firm demographics we
discussed in Section 4.4. Specifically, a high fraction of old, large firms were significantly
smaller when they were younger. In Table 9(a) we look at firms currently aged 15 in the
model, and compute the size bin they were in at age 0. For aged 15 firms in all size bins, a
significant majority of firms were in smaller size bins at age 0. Panel (b) does the same in
the data, and shows that the model provides a good qualitative fit to the data. In the model,
this growth is entirely driven by firms overcoming their financial frictions. For example,

30



Table 8: Marginal firm size and age distributions in the model and data

Fraction of firms Average employment

Size 0-4 4-12 12-40 40-120 120+ 0-4 4-12 12-40 40-120 120+
Model 0.63 0.22 0.11 0.03 0.01 1.83 5.78 17.07 57.22 383.35
Data 0.61 0.22 0.12 0.03 0.01 1.85 5.59 16.35 52.99 375.33

(a) Size distribution

Fraction of firms Average employment

Age 0-5 6-15 16+ 0-5 6-15 16+
Model 0.25 0.28 0.48 6.82 10.42 13.07
Data 0.26 0.31 0.43 7.77 11.11 17.78

(b) Age distribution

Note: Firm age and size distributions in the model and data. Size bins refer to employment and age bins to
age in years since birth. Average employment refers to total employment in the bin divided by the number
of firms in the bin.

the fact that firms can eventually reach size bin 120+ despite being born in any of the 12-40,
40-120, or 120+ bins is because of the heterogeneity in initial net wealth draws, n0. Without
this feature, it would be impossible for the model to generate more than one non-zero entry
per column in this table.

Table 9: Firm size over the life-cycle (“looking backwards”)

Age 15
0-4 4-12 12-40 40-120 120+

A
ge

0

0-4 1.00 0.85 0.53 0.14 0.00
4-12 0.00 0.15 0.27 0.25 0.01

12-40 0.00 0.00 0.21 0.39 0.14
40-120 0.00 0.00 0.00 0.22 0.33

120+ 0.00 0.00 0.00 0.00 0.52

1.00 1.00 1.00 1.00 1.00

(a) Model

Age 15
0-4 4-12 12-40 40-120 120+

A
ge

0

0-4 0.87 0.64 0.38 0.30 0.19
4-12 0.11 0.31 0.35 0.21 0.10

12-40 0.02 0.05 0.25 0.31 0.17
40-120 0.00 0.00 0.02 0.15 0.15

120+ 0.00 0.00 0.00 0.02 0.39

1.00 1.00 1.00 1.00 1.00

(b) Data

Note: Distributions of size bins at age 0 for firms currently age 15 in the model (panel a) and data (panel b),
conditional on size bin at age 15. Blue cells highlight the diagonal.

E.3 Firm cyclicality in response to a typical business cycle
In this section we demonstrate that our calibrated model does a reasonable job of matching
the cyclicality facts we documented in Figure 2. In a previous version of this paper we
explicitly reverse engineered the calibration required to match these facts and showed that
heterogeneous RTS and initial net worth were necessary in this model. We now instead
directly calibrate RTS and initial net worth from our micro data, and show that the model
continues to a good job at matching these facts. Part of this exercise involves using the
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model to identify the composition of the aggregate shocks hitting the economy during a
hypothetical typical business cycle, meant to capture the average over the business cycles
covered by our dataset. We showed analytically in Section 3 that a combination of a finan-
cial and TFP shock could match the qualitative patterns in our data when combined with
heterogeneous RTS, and we now investigate that quantitatively.

Using the quantitative model allows us to extend the toy model analysis, and we now
also allow for an endogenous capital price to investigate whether our model can also gen-
erate the cyclicality patterns from financial accelerator effects. Specifically, we consider
two exercises. In the first, we hold capital prices fixed (by setting ψK = 0) and subject the
economy to a temporary financial and TFP shock (both with the same persistence59) large
enough to drive a 5% fall in output. To roughly match the fact that young firms have a
coefficient of roughly 2 in our regressions, we set the financial shock to be a 10% tightening
of the borrowing constraint (twice the size of the output fall) since young firms are primar-
ily affected by the borrowing constraint. In the second exercise we instead do not consider
a financial shock, and consider only a TFP shock, but allow for endogenous capital price
movements by setting ψK > 0. To roughly match the cyclicality of young firms we control
the strength of the financial accelerator effect by setting ψK = 0.15. In both experiments
we adjust the size of the TFP shock to generate the targeted 5% output fall. Both of these
exercises are carried out in the open economy model.

In Figure 34 we plot the results for the first exercise, which we take as our baseline
exercise. Panels (a) to (c) show the simulated path for output, the estimated shocks, and
equilibrium prices respectively. To generate the peak 5% output fall requires the combi-
nation of a 10% tightening of the borrowing constraint and 1% fall in TFP, and leads to
a slightly more than 1% fall in the wage. Panel (d) shows the cyclicality coefficients for
firm-level employment growth from (1) on model simulated data. We use exactly the same
age and size bins as in our data, but add an extra age bin for firms aged 0-1 to zoom in
on the behavior of very young firms. We see that the model captures our broad patterns
correctly. Young firms are more cyclical than old firms and, among old firms, cyclicality
is increasing in size. In the data cyclicality was decreasing in size for young firms in the
age 0-5 bin. In the model cyclicality is actually increasing in size for age 0-5 firms, so here
the model is missing the data, but we see that the model does generate a decreasing slope
in size if we zoom in to the firms in the 0-1 age bin. Quantitatively, the fit to the data is
quite good in several dimensions. Depending on the size bin, the gap in the cyclicality
coefficient between age 0-5 and 16+ firms is around 0.5 to 1, similar to the magnitudes of
the gaps in Figure 2. In the data, among age 16+ firms, cyclicality increases by around 0.75
when moving from the smallest to largest bin, and in the model this increase is similar at
around 1.

In Figure 35 we present the results for the experiment with no financial shock but an
endogenous capital price. In this version, a larger TFP shock of 0.94 is required, but it drives
a 2.5% fall in capital prices which reduces net worth on impact and hence tightens financial
constraints for young firms. This generates endogenously the fact that young firms are
more cyclical (panel d) and again with a gap between young and old firms quantitatively

59Specifically both are continuous-time AR(1) processes. The aggregate TFP shock at has value a = 1 in
steady state, is common to all firms and multiplies their firm level productivity, z. We let ȧt = −ρa(at − a)
and ˙̄ϕt = −ρϕ(ϕ̄t − ϕ̄) and set ρa = ρϕ = 0.3. At time 0, a0 and ϕ̄0 unexpectedly jump from steady state to a
new value, and then are known to deterministically converge back to steady state following these processes.
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similar to the data. Among age 0-1 firms there is a slightly downwards slope of cyclicality
in size. We still find an upwards slope in cyclicality in firm size among the oldest firm
group, but this effect is now muted. Directly inspecting the time series of firm simulations
reveals that this is due to a timing effect, and not because large firms are less cyclical in this
second experiment.

Finally, in Figure 36 we repeat our first experiment but this time in a closed economy
version of the model. This experiment could be interpreted as, for example, applying more
to the US than Denmark, since we argued that Denmark is better modelled as a closed
economy. This experiment generates results similar to the second experiment: we still find
that young firms are more cyclical than old, a downwards slope of cyclicality in size for age
0-1 firms, but the positive slope in size among old firms is now muted. Directly inspecting
the model simulated data reveals that this is again due to a timing effect, and not because
large firms are less cyclical in this second experiment.60

To understand the role of firm-level data in identification of aggregate shocks, in Fig-
ure 41 we plot the impulse responses to a TFP shock and our baseline financial shock sep-
arately. The key idea here is that the aggregate responses look quite similar, despite the
different nature of the shocks. It is only in the firm level responses by age (panel d) that
the two shocks become more easy to distinguish, as the TFP shock causes both young and
old firms to shrink, while the financial shock causes young firms to shrink and old firms to
expand. Similarly, the TFP shock causes a small fall in entry (panel e) while the financial
shock causes a much large fall.

60Endogenous interest rate or capital price movements cause unconstrained firms to smooth out their in-
vestment decisions, and so they shrink gradually in response to the shocks, and not immediately. This causes
the regression to miss part of the cyclicality of large firms, since they continue shrinking even when output
starts growing again as the direct effect of the TFP shock fades. In the data (not shown) we find that the em-
ployment and sales of old firms track GDP growth much more closely, suggesting that this smoothing is not
entirely data-consistent. This could perhaps be rectified in the model by introducing more realistic interest
rate movements (see, e.g. Winberry, 2021).
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Figure 34: Cyclicality in response to typical business cycle (TFP + financial shock)
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(d) Cyclicality

Note: Response of economy to typical business cycle experiment consisting of a TFP shock and financial
shock in open economy with fixed capital price. Right column gives cyclicality regression coefficients for
employment growth from (1) on model-simulated data.

Figure 35: Cyclicality in response to typical business cycle (TFP + financial accelerator)
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(d) Cyclicality
Note: Response of economy to typical business cycle experiment consisting of a TFP shock endogenous
capital price in open economy. Right column gives cyclicality regression coefficients for employment growth
from (1) on model-simulated data.

Figure 36: Cyclicality in response to typical business cycle (closed economy)
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(d) Cyclicality
Note: Response of economy to typical business cycle experiment consisting of a TFP shock and financial
shock in closed economy with fixed capital price. Right column gives cyclicality regression coefficients for
employment growth from (1) on model-simulated data.
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E.4 Additional model tables and figures

Table 10: Distribution of firm types s across size bins in the model

Size type s
1 2 3 4 5

Si
ze

bi
n

0-4 0.583 0.033 0.010 0.001 0.000 0.626
4-12 0.000 0.202 0.013 0.002 0.000 0.217

12-40 0.000 0.000 0.108 0.006 0.000 0.114
40-120 0.000 0.000 0.000 0.028 0.001 0.030

120+ 0.000 0.000 0.000 0.000 0.012 0.012

0.583 0.235 0.130 0.037 0.014 1

Note: Distribution of size types s across size bins in the calibrated steady state.

Figure 37: Leverage (D/A) distribution at age 0
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Note: Entrant leverage distribution in the model and the data, by size at age 0.
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Table 11: Model Parameters and Calibration

Interpretation Value Source Moment
Common parameters Data Model

r Discount rate 0.0408 4% yearly real interest rate
δ Depreciation rate 0.1054 10% annual rate
α Labor-capital ratio in prod fun 0.2924 2/3 Labor cost share
χ Labor disutility shifter 0.3797 Normalise wss = 1
ηL Labor supply elasticity 0.3 Standard value
ψK Capital adjust costs 2.3728 25% elasticity (Brinca et al., 2016)
be Entry elasticity 7 Firm entry cyclicality
ζ Exogenous exit rate 0.0426 Average exit rate 5% per year 5% 4.96%
αω Arrival rate fixed cost shock 0.0892 Exit rate age 0 / age 16 2 2.03
σI Std. idiosyncratic shocks 0.0072 Std. firm-level employment 22.58% 22.58%
ρI Autocorr. idiosyncratic shocks 0.6590 Khan and Thomas (2013)
µe Mean net worth fraction of entrants 0.5296 Employment share age 0-5 firms 15.44% 15.6%
σe Std entrant net worth 1.25 Entrant leverage distribution See Figure 37
ϕ̄ S.s. collateral limit 1/(1 − 0.7) Entrant leverage distribution See Figure 37

Size-type specific parameters
µ0(1) S.s. entry flow s = 1 0.0305 Firm share 0-4 size bin 60.88% 62.64%
µ0(2) S.s. entry flow s = 2 0.0116 Firm share 4-12 size bin 22.40% 21.75%
µ0(3) S.s. entry flow s = 3 0.0064 Firm share 12-40 size bin 12.10% 11.39%
µ0(4) S.s. entry flow s = 4 0.0018 Firm share 40-120 size bin 3.32% 2.98%
µ0(5) S.s. entry flow s = 5 0.0007 Firm share 120+ size bin 1.30% 1.24%
zS

1 Productivity for type s = 1 0.9270 Emp share 0-4 size bin 10.26% 10.64%
zS

2 Productivity for type s = 2 0.7247 Emp share 4-12 size bin 11.39% 11.65%
zS

3 Productivity for type s = 3 0.6422 Emp share 12-40 size bin 17.99% 18.01%
zS

4 Productivity for type s = 4 0.6007 Emp share 40-120 size bin 15.97% 15.82%
zS

5 Productivity for type s = 5 0.5626 Emp share 120+ size bin 44.39% 43.88%
η1 Returns to scale s = 1 0.75 RTS estimate 0-4 size bin
η2 Returns to scale s = 2 0.875 RTS estimate 4-12 size bin
η3 Returns to scale s = 3 0.925 RTS estimate 12-40 size bin
η4 Returns to scale s = 4 0.95 RTS estimate 40-120 size bin
η5 Returns to scale s = 5 0.97 RTS estimate 120+ size bin
κ1 Fixed cost scaler s = 1 1.9381 P(endog exit) = 1% when old 0-4 size bin
κ2 Fixed cost scaler s = 2 2.5360 P(endog exit) = 1% when old 4-12 size bin
κ3 Fixed cost scaler s = 3 4.3183 P(endog exit) = 1% when old 12-40 size bin
κ4 Fixed cost scaler s = 4 9.5600 P(endog exit) = 1% when old 40-120 size bin
κ5 Fixed cost scaler s = 5 43.3127 P(endog exit) = 1% when old 120+ size bin

Note: Parameters and calibration targets for the baseline quantitative model. The final two columns give
the fit to the targeted moment for parameters updated during the calibration routine. For parameters where
no number is given, either the parameter has been set outside of the calibration routine, or the parameter is
set analytically and the fit is exact. We report the entry flows µ0(s) rather than the shifters me

s since they are
easier to interpret, and the shifters are implied by the flows via µ0(s) = me

s(ve(s))be .
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Figure 38: Firm life-cycle in steady state

0 5 10 15 20

age

0.9

1

1.1

1.2

1.3

1.4

R
el
a
ti
v
e

to
a
g
e

0

(a) Total output of cohort

0 5 10 15 20

age

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el
a
ti
v
e

to
a
g
e

0

(b) No firms

0 5 10 15 20

age

1

1.5

2

2.5

3

R
el
a
ti
v
e

to
a
g
e

0

(c) Total output per firm

0 5 10 15 20

age

4

5

6

7

8

9

10

%

(d) Exit rate

0 5 10 15 20

age

1

1.5

2

2.5

3

3.5

?

(e) Leverage

0 5 10 15 20

age

0

20

40

60

80

100

%

(f) Fraction constrained

Note: Firm life-cycle in the model, averaging over all firms.

Figure 39: Firm exit: the role of initial net worth
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Note: Average exit rate for firms conditioning on initial net worth. Blue (red) line is firms with below (above)
median initial net worth (defined relative to their size type).
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Figure 40: Aggregate effect of a temporary financial shock: further aggregates
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Note: Response of additional aggregates to a temporary 50% tightening of the borrowing constraint.

Figure 41: Comparison of financial and TFP shock
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Note: Response of the model to a financial (blue line) versus TFP (red line) shock.
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Figure 42: Response of open versus closed economy model to financial shock
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Note: Response of the model to a financial shock in the open economy (blue line) and closed economy (red
line) models.

39


	Introduction
	Measuring cyclicality in the data
	Data
	Estimation framework
	Firm cyclicality
	Levels, growth rate and cyclicality of firm finance variables

	A simple model of finance and heterogeneous RTS
	Environment
	Cyclicality in response to productivity and financial shocks
	Mapping the model to the data

	Empirical supportive evidence
	Empirical estimates of returns to scale
	The effect of Finance and Returns to Scale on Firms Cyclicality
	Financial situation at entry and its implications
	Persistence of firm size

	Quantitative model
	Model setup
	Steady state costs of financial frictions
	Propagation of financial crises

	Conclusion
	Data construction appendix
	Additional information on dataset building process
	Basic data

	Empirical results appendix
	Regression details
	Additional cyclicality results
	Regression table for the baseline results
	Results for the sample limited to firms reporting financial variables
	Cyclicality with assets based size definition
	Alternative specification of age and size interaction
	Cyclicality with entry and exit

	RTS and Leverage regression details
	Net worth
	Net worth at entry and odds of surviving
	Demographics

	Returns to scale estimation appendix
	Estimation Methodology
	RTS Data construction
	Variables
	Sectoral prices

	Production function estimation, results for productivity
	Alternative partitioning of the firm sample when estimating rts
	Relation to existing empirical findings about RTS heterogeneity

	Analytical model appendix
	Model details: Firm size, firm age and life-cycle dynamics
	Proofs

	Quantitative model appendix
	Further model details
	Calibration
	Firm cyclicality in response to a typical business cycle
	Additional model tables and figures


